IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1907.12996.html
   My bibliography  Save this paper

Predicting credit default probabilities using machine learning techniques in the face of unequal class distributions

Author

Listed:
  • Anna Stelzer

Abstract

This study conducts a benchmarking study, comparing 23 different statistical and machine learning methods in a credit scoring application. In order to do so, the models' performance is evaluated over four different data sets in combination with five data sampling strategies to tackle existing class imbalances in the data. Six different performance measures are used to cover different aspects of predictive performance. The results indicate a strong superiority of ensemble methods and show that simple sampling strategies deliver better results than more sophisticated ones.

Suggested Citation

  • Anna Stelzer, 2019. "Predicting credit default probabilities using machine learning techniques in the face of unequal class distributions," Papers 1907.12996, arXiv.org.
  • Handle: RePEc:arx:papers:1907.12996
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1907.12996
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    2. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    3. B Baesens & T Van Gestel & S Viaene & M Stepanova & J Suykens & J Vanthienen, 2003. "Benchmarking state-of-the-art classification algorithms for credit scoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 627-635, June.
    4. Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
    5. D J Hand, 2005. "Good practice in retail credit scorecard assessment," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(9), pages 1109-1117, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1907.12996. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.