IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v7y2025i4p59-d1774285.html

Can Simple Balancing Algorithms Improve School Dropout Forecasting? The Case of the State Education Network of Espírito Santo, Brazil

Author

Listed:
  • Guilherme Armando de Almeida Pereira

    (Department of Economics, Federal University of Espírito Santo, Vitória 29075-910, Brazil)

  • Kiara de Deus Demura

    (Education Center, Jones dos Santos Neves Institute, Vitória 29052-015, Brazil)

Abstract

This study evaluates the effect of simple data-level balancing techniques on predicting school dropout across all state public high schools in Espírito Santo, Brazil. We trained Logistic Regression with LASSO (LR), Random Forest (RF), and Naive Bayes (NB) models on first-quarter data from 2018–2019 and forecasted dropouts for 2020, with additional validation in 2022. Facing strong class imbalance, we compared three balancing methods—RUS, SMOTE, and ROSE—against models trained on the original data. Performance was assessed using accuracy, sensitivity, specificity, precision, F1, AUC, and G-mean. Results show that the imbalance severely harmed RF and NB trained without balancing, while Logistic Regression remained more stable. Overall, balancing techniques improved most metrics: RUS and ROSE were often superior, while SMOTE produced mixed results. Optimal configurations varied by year and metric, and RUS and ROSE made up most of the best combinations. Although most configurations benefited from balancing, some decreased performance; therefore, we recommend systematic testing of multiple balancing strategies and further research into SMOTE variants and algorithm-level approaches.

Suggested Citation

  • Guilherme Armando de Almeida Pereira & Kiara de Deus Demura, 2025. "Can Simple Balancing Algorithms Improve School Dropout Forecasting? The Case of the State Education Network of Espírito Santo, Brazil," Forecasting, MDPI, vol. 7(4), pages 1-19, October.
  • Handle: RePEc:gam:jforec:v:7:y:2025:i:4:p:59-:d:1774285
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/7/4/59/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/7/4/59/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    2. Juan C. King & José M. Amigó, 2025. "Integration of LSTM Networks in Random Forest Algorithms for Stock Market Trading Predictions," Forecasting, MDPI, vol. 7(3), pages 1-25, September.
    3. Mariusz Ptak & Mariusz Sojka & Katarzyna Szyga-Pluta & Teerachai Amnuaylojaroen, 2025. "Three Environments, One Problem: Forecasting Water Temperature in Central Europe in Response to Climate Change," Forecasting, MDPI, vol. 7(2), pages 1-22, May.
    4. Angeliki Papana & Anastasia Spyridou, 2020. "Bankruptcy Prediction: The Case of the Greek Market," Forecasting, MDPI, vol. 2(4), pages 1-21, December.
    5. João A. Bastos, 2022. "Predicting Credit Scores with Boosted Decision Trees," Forecasting, MDPI, vol. 4(4), pages 1-11, November.
    6. Iván Sandoval-Palis & David Naranjo & Jack Vidal & Raquel Gilar-Corbi, 2020. "Early Dropout Prediction Model: A Case Study of University Leveling Course Students," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    7. Lyne Imene Souadda & Ahmed Rami Halitim & Billel Benilles & José Manuel Oliveira & Patrícia Ramos, 2025. "Optimizing Credit Risk Prediction for Peer-to-Peer Lending Using Machine Learning," Forecasting, MDPI, vol. 7(3), pages 1-31, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Novaes de Amorim & Rob Deardon & Vineet Saini, 2021. "A stacked ensemble method for forecasting influenza-like illness visit volumes at emergency departments," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-15, March.
    2. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    3. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Zakia Salod & Ozayr Mahomed, 2023. "VPAgs-Dataset4ML: A Dataset to Predict Viral Protective Antigens for Machine Learning-Based Reverse Vaccinology," Data, MDPI, vol. 8(2), pages 1-12, February.
    6. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    7. Li, Li & Li, Han & Panagiotelis, Anastasios, 2025. "Boosting domain-specific models with shrinkage: An application in mortality forecasting," International Journal of Forecasting, Elsevier, vol. 41(1), pages 191-207.
    8. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    9. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    10. Somodi, Imelda & Bede-Fazekas, Ákos & Botta-Dukát, Zoltán & Molnár, Zsolt, 2024. "Confidence and consistency in discrimination: A new family of evaluation metrics for potential distribution models," Ecological Modelling, Elsevier, vol. 491(C).
    11. Manuel Marques-Cruz & Daniel Martinho Dias & João A. Fonseca & Bernardo Sousa-Pinto, 2024. "Ten year citation prediction model for systematic reviews using early years citation data," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4847-4862, August.
    12. Maria Victoria Bascon & Tomohiro Nakata & Satoshi Shibata & Itsuki Takata & Nanami Kobayashi & Yusuke Kato & Shun Inoue & Kazuyuki Doi & Jun Murase & Shunsaku Nishiuchi, 2022. "Estimating Yield-Related Traits Using UAV-Derived Multispectral Images to Improve Rice Grain Yield Prediction," Agriculture, MDPI, vol. 12(8), pages 1-28, August.
    13. Yang Yue & Yingjie Jiang & Fan Zhou & Yuantao Jiang & Yiting Long & Kaiyu Wang, 2022. "Reward Uncertainty and Expected Value Enhance Generalization of Episodic Memory," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    14. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    15. María Adelaida Gómez & Ashton Trey Belew & Deninson Alejandro Vargas & Lina Giraldo-Parra & Neal Alexander & David E. Rebellón-Sánchez & Theresa A. Alexander & Najib M. El-Sayed, 2025. "Innate biosignature of treatment failure in human cutaneous leishmaniasis," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    16. Alexander Wettstein & Gabriel Jenni & Ida Schneider & Fabienne Kühne & Martin grosse Holtforth & Roberto La Marca, 2023. "Predictors of Psychological Strain and Allostatic Load in Teachers: Examining the Long-Term Effects of Biopsychosocial Risk and Protective Factors Using a LASSO Regression Approach," IJERPH, MDPI, vol. 20(10), pages 1-20, May.
    17. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    18. Svetlana Kresova & Sebastian Hess, 2022. "Identifying the Determinants of Regional Raw Milk Prices in Russia Using Machine Learning," Agriculture, MDPI, vol. 12(7), pages 1-18, July.
    19. Paola Perchinunno & Massimo Bilancia & Domenico Vitale, 2021. "A Statistical Analysis of Factors Affecting Higher Education Dropouts," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 341-362, August.
    20. Marcela Mendoza-Suárez & Turgut Yigit Akyol & Marcin Nadzieja & Stig U. Andersen, 2024. "Increased diversity of beneficial rhizobia enhances faba bean growth," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:7:y:2025:i:4:p:59-:d:1774285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.