IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v7y2025i4p59-d1774285.html
   My bibliography  Save this article

Can Simple Balancing Algorithms Improve School Dropout Forecasting? The Case of the State Education Network of Espírito Santo, Brazil

Author

Listed:
  • Guilherme Armando de Almeida Pereira

    (Department of Economics, Federal University of Espírito Santo, Vitória 29075-910, Brazil)

  • Kiara de Deus Demura

    (Education Center, Jones dos Santos Neves Institute, Vitória 29052-015, Brazil)

Abstract

This study evaluates the effect of simple data-level balancing techniques on predicting school dropout across all state public high schools in Espírito Santo, Brazil. We trained Logistic Regression with LASSO (LR), Random Forest (RF), and Naive Bayes (NB) models on first-quarter data from 2018–2019 and forecasted dropouts for 2020, with additional validation in 2022. Facing strong class imbalance, we compared three balancing methods—RUS, SMOTE, and ROSE—against models trained on the original data. Performance was assessed using accuracy, sensitivity, specificity, precision, F1, AUC, and G-mean. Results show that the imbalance severely harmed RF and NB trained without balancing, while Logistic Regression remained more stable. Overall, balancing techniques improved most metrics: RUS and ROSE were often superior, while SMOTE produced mixed results. Optimal configurations varied by year and metric, and RUS and ROSE made up most of the best combinations. Although most configurations benefited from balancing, some decreased performance; therefore, we recommend systematic testing of multiple balancing strategies and further research into SMOTE variants and algorithm-level approaches.

Suggested Citation

  • Guilherme Armando de Almeida Pereira & Kiara de Deus Demura, 2025. "Can Simple Balancing Algorithms Improve School Dropout Forecasting? The Case of the State Education Network of Espírito Santo, Brazil," Forecasting, MDPI, vol. 7(4), pages 1-19, October.
  • Handle: RePEc:gam:jforec:v:7:y:2025:i:4:p:59-:d:1774285
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/7/4/59/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/7/4/59/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:7:y:2025:i:4:p:59-:d:1774285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.