IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32464-0.html
   My bibliography  Save this article

Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers

Author

Listed:
  • Jie Zhao

    (China Agricultural University)

  • Ji Chen

    (Aarhus University)

  • Damien Beillouin

    (CIRAD, UPR HORTSYS)

  • Hans Lambers

    (The University of Western Australia)

  • Yadong Yang

    (China Agricultural University)

  • Pete Smith

    (University of Aberdeen)

  • Zhaohai Zeng

    (China Agricultural University)

  • Jørgen E. Olesen

    (Aarhus University)

  • Huadong Zang

    (China Agricultural University)

Abstract

Diversified cropping systems, especially those including legumes, have been proposed to enhance food production with reduced inputs and environmental impacts. However, the impact of legume pre-crops on main crop yield and its drivers has never been systematically investigated in a global context. Here, we synthesize 11,768 yield observations from 462 field experiments comparing legume-based and non-legume cropping systems and show that legumes enhanced main crop yield by 20%. These yield advantages decline with increasing N fertilizer rates and crop diversity of the main cropping system. The yield benefits are consistent among main crops (e.g., rice, wheat, maize) and evident across pedo-climatic regions. Moreover, greater yield advantages (32% vs. 7%) are observed in low- vs. high-yielding environments, suggesting legumes increase crop production with low inputs (e.g., in Africa or organic agriculture). In conclusion, our study suggests that legume-based rotations offer a critical pathway for enhancing global crop production, especially when integrated into low-input and low-diversity agricultural systems.

Suggested Citation

  • Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32464-0
    DOI: 10.1038/s41467-022-32464-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32464-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32464-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pietro Barbieri & Sylvain Pellerin & Verena Seufert & Thomas Nesme, 2019. "Changes in crop rotations would impact food production in an organically farmed world," Nature Sustainability, Nature, vol. 2(5), pages 378-385, May.
    2. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    3. C. Terrer & R. P. Phillips & B. A. Hungate & J. Rosende & J. Pett-Ridge & M. E. Craig & K. J. Groenigen & T. F. Keenan & B. N. Sulman & B. D. Stocker & P. B. Reich & A. F. A. Pellegrini & E. Pendall &, 2021. "A trade-off between plant and soil carbon storage under elevated CO2," Nature, Nature, vol. 591(7851), pages 599-603, March.
    4. Delphine Renard & David Tilman, 2019. "National food production stabilized by crop diversity," Nature, Nature, vol. 571(7764), pages 257-260, July.
    5. Yantai Gan & Chang Liang & Qiang Chai & Reynald L. Lemke & Con A. Campbell & Robert P. Zentner, 2014. "Improving farming practices reduces the carbon footprint of spring wheat production," Nature Communications, Nature, vol. 5(1), pages 1-13, December.
    6. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    7. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    8. L. E. Drinkwater & P. Wagoner & M. Sarrantonio, 1998. "Legume-based cropping systems have reduced carbon and nitrogen losses," Nature, Nature, vol. 396(6708), pages 262-265, November.
    9. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    10. Adrian Muller & Christian Schader & Nadia El-Hage Scialabba & Judith Brüggemann & Anne Isensee & Karl-Heinz Erb & Pete Smith & Peter Klocke & Florian Leiber & Matthias Stolze & Urs Niggli, 2017. "Strategies for feeding the world more sustainably with organic agriculture," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    11. Cameron M. Pittelkow & Xinqiang Liang & Bruce A. Linquist & Kees Jan van Groenigen & Juhwan Lee & Mark E. Lundy & Natasja van Gestel & Johan Six & Rodney T. Venterea & Chris van Kessel, 2015. "Productivity limits and potentials of the principles of conservation agriculture," Nature, Nature, vol. 517(7534), pages 365-368, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia, Haiyong & Qiao, Yuetong & Li, Xiaojing & Xue, Yanhui & Wang, Na & Yan, Wei & Xue, Yanfang & Cui, Zhenling & van der Werf, Wopke, 2023. "Moderation of nitrogen input and integration of legumes via intercropping enable sustainable intensification of wheat-maize double cropping in the North China Plain: A four-year rotation study," Agricultural Systems, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debuschewitz, Emil & Sanders, Jürn, 2021. "Bewertung der Umweltwirkungen des ökologischen Landbaus im Kontext der kontroversen wissenschaftlichen Diskurse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317076, German Association of Agricultural Economists (GEWISOLA).
    2. de la Riva, Enrique G. & Ulrich, Werner & Batáry, Péter & Baudry, Julia & Beaumelle, Léa & Bucher, Roman & Čerevková, Andrea & Felipe-Lucia, María R. & Gallé, Róbert & Kesse-Guyot, Emmanuelle & Rembia, 2023. "From functional diversity to human well-being: A conceptual framework for agroecosystem sustainability," Agricultural Systems, Elsevier, vol. 208(C).
    3. Niraj Prakash Joshi & Luni Piya, 2021. "Food and Nutrient Supply from Organic Agriculture in the Least Developed Countries and North America," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
    4. David Weisberger & Virginia Nichols & Matt Liebman, 2019. "Does diversifying crop rotations suppress weeds? A meta-analysis," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-12, July.
    5. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    6. Kalle Margus & Viacheslav Eremeev & Evelin Loit & Eve Runno-Paurson & Erkki Mäeorg & Anne Luik & Liina Talgre, 2022. "Impact of Farming System on Potato Yield and Tuber Quality in Northern Baltic Sea Climate Conditions," Agriculture, MDPI, vol. 12(4), pages 1-12, April.
    7. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Carlson, Andrea & Greene, Catherine & Raszap Skorbiansky, Sharon & Hitaj, Claudia & Ha, Kim & Cavigelli, Michel & Ferrier, Peyton & McBride, William, 2023. "U.S. Organic Production, Markets, Consumers, and Policy, 2000-21," USDA Miscellaneous 333551, United States Department of Agriculture.
    9. Dardonville, Manon & Legrand, Baptiste & Clivot, Hugues & Bernardin, Claire & Bockstaller, Christian & Therond, Olivier, 2022. "Assessment of ecosystem services and natural capital dynamics in agroecosystems," Ecosystem Services, Elsevier, vol. 54(C).
    10. Hongbo Guo & Enzai Du & César Terrer & Robert B. Jackson, 2024. "Global distribution of surface soil organic carbon in urban greenspaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Tiziano Gomiero, 2013. "Alternative Land Management Strategies and Their Impact on Soil Conservation," Agriculture, MDPI, vol. 3(3), pages 1-20, August.
    12. Barbieri, Pietro & Starck, Thomas & Voisin, Anne-Sophie & Nesme, Thomas, 2023. "Biological nitrogen fixation of legumes crops under organic farming as driven by cropping management: A review," Agricultural Systems, Elsevier, vol. 205(C).
    13. Christian Thierfelder & Pauline Chivenge & Walter Mupangwa & Todd S. Rosenstock & Christine Lamanna & Joseph X. Eyre, 2017. "How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 537-560, June.
    14. Aleksandra Kowalska & Milena Bieniek, 2022. "Meeting the European green deal objective of expanding organic farming," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(3), pages 607-633, September.
    15. Xia, Haiyong & Qiao, Yuetong & Li, Xiaojing & Xue, Yanhui & Wang, Na & Yan, Wei & Xue, Yanfang & Cui, Zhenling & van der Werf, Wopke, 2023. "Moderation of nitrogen input and integration of legumes via intercropping enable sustainable intensification of wheat-maize double cropping in the North China Plain: A four-year rotation study," Agricultural Systems, Elsevier, vol. 204(C).
    16. Nisar, Shahida & Benbi, Dinesh Kumar & Toor, Amardeep Singh, 2021. "Energy budgeting and carbon footprints of three tillage systems in maize-wheat sequence of north-western Indo-Gangetic Plains," Energy, Elsevier, vol. 229(C).
    17. Ostandie, Noémie & Giffard, Brice & Tolle, Pauline & Ugaglia, Adeline Alonso & Thiéry, Denis & Rusch, Adrien, 2022. "Organic viticulture leads to lower trade-offs between agroecosystem goods but does not improve overall multifunctionality," Agricultural Systems, Elsevier, vol. 203(C).
    18. Yang Yue & Yingjie Jiang & Fan Zhou & Yuantao Jiang & Yiting Long & Kaiyu Wang, 2022. "Reward Uncertainty and Expected Value Enhance Generalization of Episodic Memory," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    19. Joseph, Sarah & Peters, Irene & Friedrich, Hanno, 2019. "Can Regional Organic Agriculture Feed the Regional Community? A Case Study for Hamburg and North Germany," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    20. Anna Kuczuk & Katarzyna Widera, 2021. "A Greater Share of Organic Agriculture in Relation to Food Security Resulting from the Energy Demand Obtained from Food—Scenarios for Poland until 2030," Energies, MDPI, vol. 14(21), pages 1-19, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32464-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.