IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v3y1997i3p183-202.html
   My bibliography  Save this article

Feedforward neural networks in the classification of financial information

Author

Listed:
  • Carlos Serrano-Cinca

Abstract

Financial research has given rise to numerous studies in which, on the basis of the information provided by financial statements, companies are classified into different groups. An example is that of the classification of companies into those that are solvent and those that are insolvent. Linear discriminant analysis (LDA) and logistic regression have been the most commonly used statistical models in this type of work. One feedforward neural network, known as the multilayer perceptron (MLP), performs the same task as LDA and logistic regression which, a priori, makes it appropriate for the treatment of financial information. In this paper, a practical case based on data from Spanish companies, shows, in an empirical form, the strengths and weaknesses of feedforward neural networks. The desirability of carrying out an exploratory data analysis of the financial ratios in order to study their statistical properties, with the aim of achieving an appropriate model selection, is made clear.

Suggested Citation

  • Carlos Serrano-Cinca, 1997. "Feedforward neural networks in the classification of financial information," The European Journal of Finance, Taylor & Francis Journals, vol. 3(3), pages 183-202.
  • Handle: RePEc:taf:eurjfi:v:3:y:1997:i:3:p:183-202
    DOI: 10.1080/135184797337426
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/135184797337426
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eisenbeis, Robert A, 1977. "Pitfalls in the Application of Discriminant Analysis in Business, Finance, and Economics," Journal of Finance, American Finance Association, vol. 32(3), pages 875-900, June.
    2. K. Feldman & J. Kingdon, 1995. "Neural networks and some applications to finance," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(1), pages 17-42.
    3. Cecilio Mar-Molinero & Carlos Serrano-Cinca, 2001. "Bank failure: a multidimensional scaling approach," The European Journal of Finance, Taylor & Francis Journals, vol. 7(2), pages 165-183.
    4. Srinivasan, Venkat & Kim, Yong H, 1987. " Credit Granting: A Comparative Analysis of Classification Procedures," Journal of Finance, American Finance Association, vol. 42(3), pages 665-681, July.
    5. Molinero, C Mar & Ezzamel, M, 1991. "Multidimensional scaling applied to corporate failure," Omega, Elsevier, vol. 19(4), pages 259-274.
    6. repec:bla:joares:v:22:y:1984:i::p:87-114 is not listed on IDEAS
    7. Haggstrom, Gus W, 1983. "Logistic Regression and Discriminant Analysis by Ordinary Least Squares," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(3), pages 229-238, July.
    8. repec:bla:joares:v:4:y:1966:i::p:71-111 is not listed on IDEAS
    9. Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. " Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
    10. Lo, Andrew W., 1986. "Logit versus discriminant analysis : A specification test and application to corporate bankruptcies," Journal of Econometrics, Elsevier, vol. 31(2), pages 151-178, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Korol, Tomasz, 2013. "Early warning models against bankruptcy risk for Central European and Latin American enterprises," Economic Modelling, Elsevier, vol. 31(C), pages 22-30.
    2. Alessandra Amendola & Marialuisa Restaino & Luca Sensini, 2010. "Variable Selection In Forecasting Models For Corporate Bankruptcy," Working Papers 3_216, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    3. du Jardin, Philippe, 2008. "Bankruptcy prediction and neural networks: The contribution of variable selection methods," MPRA Paper 44384, University Library of Munich, Germany.
    4. repec:spr:schmbr:v:18:y:2017:i:3:d:10.1007_s41464-017-0034-y is not listed on IDEAS
    5. repec:kap:compec:v:51:y:2018:i:3:d:10.1007_s10614-016-9628-6 is not listed on IDEAS
    6. Farzan Aminian & E. Suarez & Mehran Aminian & Daniel Walz, 2006. "Forecasting Economic Data with Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 28(1), pages 71-88, August.
    7. Shuofen Hsu & Chaohsin Lin & Yaling Yang, 2008. "Integrating Neural Networks for Risk-Adjustment Models," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(3), pages 617-642.
    8. Cecilio Mar-Molinero & Carlos Serrano-Cinca, 2001. "Bank failure: a multidimensional scaling approach," The European Journal of Finance, Taylor & Francis Journals, vol. 7(2), pages 165-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:3:y:1997:i:3:p:183-202. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/REJF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.