IDEAS home Printed from https://ideas.repec.org/p/sep/wpaper/3_216.html
   My bibliography  Save this paper

Variabile Selection in Forecasting Models for Corporate Bankruptcy

Author

Listed:
  • Alessandra Amendola
  • Marialuisa Restaino

    (Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno)

  • Luca Sensini

    (Dipartimento di Studi e Ricerche Aziendali (Management & Information Technology), Università degli Studi di Salerno)

Abstract

In this paper we develop statistical models for bankruptcy prediction of Italian firms in the limited liability sector, using annual balance sheet information. Several issues involved in default risk analysis are investigated, such as the structure of the data-base, the sampling procedure and the influence of predictors. In particular we focus on the variable selection problem, comparing innovative techniques based on shrinkage with traditional stepwise methods. The predictive performance of the proposed default risk model has been evaluated by means of different accuracy measures. The results of the analysis, carried out on a data-set of financial ratios expressly created from a sample of industrial firms annual reports, give evidence in favor of the proposed model over traditional ones.

Suggested Citation

  • Alessandra Amendola & Marialuisa Restaino & Luca Sensini, 2010. "Variabile Selection in Forecasting Models for Corporate Bankruptcy," Working Papers 3_216, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
  • Handle: RePEc:sep:wpaper:3_216
    as

    Download full text from publisher

    File URL: https://www.dises.unisa.it/RePEc/sep/wpaper/3_216.pdf
    File Function: First version, 2012
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lennox, Clive, 1999. "Identifying failing companies: a re-evaluation of the logit, probit and DA approaches," Journal of Economics and Business, Elsevier, vol. 51(4), pages 347-364, July.
    2. Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2009. "Variable selection and oversampling in the use of smooth support vector machines for predicting the default risk of companies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(6), pages 512-534.
    3. Carlos Serrano-Cinca, 1997. "Feedforward neural networks in the classification of financial information," The European Journal of Finance, Taylor & Francis Journals, vol. 3(3), pages 183-202.
    4. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    5. S. Balcaen & H. Ooghe, 2004. "35 years of studies on business failure: an overview of the classical statistical methodologiesand their related problems," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/248, Ghent University, Faculty of Economics and Business Administration.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Lohmann & Thorsten Ohliger, 2017. "Nonlinear Relationships and Their Effect on the Bankruptcy Prediction," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 18(3), pages 261-287, August.
    2. Wolfgang Karl Härdle & Dedy Dwi Prastyo, 2013. "Default Risk Calculation based on Predictor Selection for the Southeast Asian Industry," SFB 649 Discussion Papers SFB649DP2013-037, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    3. Alessandra Amendola & Francesco Giordano & Maria Lucia Parrella & Marialuisa Restaino, 2017. "Variable selection in high‐dimensional regression: a nonparametric procedure for business failure prediction," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(4), pages 355-368, August.
    4. José Eduardo Gómez González & Ines Paola Orozco Hinojosa, 2010. "Un modelo de alerta temprana para el sistema financiero colombiano," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 28(62), pages 124-147, June.
    5. Chiara Pederzoli & Grid Thoma & Costanza Torricelli, 2013. "Modelling Credit Risk for Innovative SMEs: the Role of Innovation Measures," Journal of Financial Services Research, Springer;Western Finance Association, vol. 44(1), pages 111-129, August.
    6. Daniel Porath, 2006. "Estimating probabilities of default for German savings banks and credit cooperatives," Schmalenbach Business Review (sbr), LMU Munich School of Management, vol. 58(3), pages 214-233, July.
    7. Tharwah Shaalan, 2018. "Classification of Lending Risks and Interpretation of Operational Efficiency in Islamic Banks Registered on the Bahrain Stock Exchange," International Journal of Economics and Financial Issues, Econjournals, vol. 8(6), pages 151-156.
    8. du Jardin, Philippe & Séverin, Eric, 2011. "Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model," MPRA Paper 44262, University Library of Munich, Germany.
    9. Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
    10. Malcolm Smith & Yun Ren & Yinan Dong, 2011. "The predictive ability of “conservatism” and “governance” variables in corporate financial disclosures," Asian Review of Accounting, Emerald Group Publishing, vol. 19(2), pages 171-185, July.
    11. Sami Ben Jabeur & Youssef Fahmi, 2018. "Forecasting financial distress for French firms: a comparative study," Empirical Economics, Springer, vol. 54(3), pages 1173-1186, May.
    12. Martin Kukuk & Michael Rönnberg, 2013. "Corporate credit default models: a mixed logit approach," Review of Quantitative Finance and Accounting, Springer, vol. 40(3), pages 467-483, April.
    13. Laitinen, Erkki K., 2007. "Classification accuracy and correlation: LDA in failure prediction," European Journal of Operational Research, Elsevier, vol. 183(1), pages 210-225, November.
    14. García-Gallego, Ana & Mures-Quintana, María-Jesús, 2013. "La muestra de empresas en los modelos de predicción del fracaso: influencia en los resultados de clasificación || The Sample of Firms in Business Failure Prediction Models: Influence on Classification," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 15(1), pages 133-150, June.
    15. Chiara Pederzoli & Grid Thoma & Costanza Torricelli, 2011. "Modelling credit risk for innovative firms: the role of innovation measures," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0025, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    16. Swami, Onkar Shivraj & Vishnu Kumar, N. Arun & Baruah, Palash, 2012. "Determinants of the exit decision of foreign banks in India," MPRA Paper 38722, University Library of Munich, Germany.
    17. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Documents de travail du Centre d'Economie de la Sorbonne 16016, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    18. Ioannidis, Christos & Pasiouras, Fotios & Zopounidis, Constantin, 2010. "Assessing bank soundness with classification techniques," Omega, Elsevier, vol. 38(5), pages 345-357, October.
    19. Apostolos G. Christopoulos & Ioannis G. Dokas & Iraklis Kollias & John Leventides, 2019. "An implementation of Soft Set Theory in the Variables Selection Process for Corporate Failure Prediction Models. Evidence from NASDAQ Listed Firms," Bulletin of Applied Economics, Risk Market Journals, vol. 6(1), pages 1-20.
    20. Mizen, Paul & Tsoukas, Serafeim, 2012. "Forecasting US bond default ratings allowing for previous and initial state dependence in an ordered probit model," International Journal of Forecasting, Elsevier, vol. 28(1), pages 273-287.

    More about this item

    Keywords

    Forecasting; Default Risk; Variable Selection; Shrinkage; Lasso.;
    All these keywords.

    JEL classification:

    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • G34 - Financial Economics - - Corporate Finance and Governance - - - Mergers; Acquisitions; Restructuring; Corporate Governance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sep:wpaper:3_216. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/dssalit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maria Rizzo (email available below). General contact details of provider: https://edirc.repec.org/data/dssalit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.