IDEAS home Printed from
   My bibliography  Save this paper

Variable Selection In Forecasting Models For Corporate Bankruptcy


  • Alessandra Amendola


  • Marialuisa Restaino

    () (Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno)

  • Luca Sensini

    () (Dipartimento di Studi e Ricerche Aziendali (Management & Information Technology), Università degli Studi di Salerno)


In this paper we develop statistical models for bankruptcy prediction of Italian firms in the limited liability sector, using annual balance sheet information. Several issues involved in default risk analysis are investigated, such as the structure of the data-base, the sampling procedure and the influence of predictors. In particular we focus on the variable selection problem, comparing innovative techniques based on shrinkage with traditional stepwise methods. The predictive performance of the proposed default risk model has been evaluated by means of different accuracy measures. The results of the analysis, carried out on a data-set of financial ratios expressly created from a sample of industrial firms annual reports, give evidence in favor of the proposed model over traditional ones.

Suggested Citation

  • Alessandra Amendola & Marialuisa Restaino & Luca Sensini, 2010. "Variable Selection In Forecasting Models For Corporate Bankruptcy," Working Papers 3_216, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
  • Handle: RePEc:sep:wpaper:3_216

    Download full text from publisher

    File URL:
    File Function: First version, 2012
    Download Restriction: no

    References listed on IDEAS

    1. Lennox, Clive, 1999. "Identifying failing companies: a re-evaluation of the logit, probit and DA approaches," Journal of Economics and Business, Elsevier, vol. 51(4), pages 347-364, July.
    2. Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2009. "Variable selection and oversampling in the use of smooth support vector machines for predicting the default risk of companies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(6), pages 512-534.
    3. Carlos Serrano-Cinca, 1997. "Feedforward neural networks in the classification of financial information," The European Journal of Finance, Taylor & Francis Journals, vol. 3(3), pages 183-202.
    4. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    5. S. Balcaen & H. Ooghe, 2004. "35 years of studies on business failure: an overview of the classical statistical methodologiesand their related problems," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/248, Ghent University, Faculty of Economics and Business Administration.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Forecasting; Default Risk; Variable Selection; Shrinkage; Lasso.;

    JEL classification:

    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • G34 - Financial Economics - - Corporate Finance and Governance - - - Mergers; Acquisitions; Restructuring; Corporate Governance


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sep:wpaper:3_216. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Maria Rizzo). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.