IDEAS home Printed from https://ideas.repec.org/a/bra/journl/v8y2017i2p11-23.html
   My bibliography  Save this article

Financial Failure Estimation of Companies in BIST Tourism Index by Altman Model and its Effect on Market Prices

Author

Listed:
  • Samuray Karaca

    (PhD Candidate in Management and Business Administration Sciences, Lecturer, Çivril Vocational High School, University of Pamukkale, Çivril/Denizli, Turkey)

  • Ercan Özen

    (Phd.in Banking and Finance, Associate Professor School of Applied Sciences, University of UÅŸak, UÅŸak, Turkey)

Abstract

In this study, it is aimed to measure the negative effects of recent developments in the Turkish tourism sector on the financial failures of companies on Istanbul Stock Exchange tourism index. Financial tables of companies in the tourism sector during 2009-2016 period were analyzed with Altman Z Score Model and it was researched whether they carry the of bankruptcy risk or not. However, the exchange prices of the stocks are compared with the calculated Z scores and the probability of bankruptcy that was measured to what extent the priced in the exchange. Result of analyzes show that the problems occurred in 2015-2016 years increased tourism companies' bankruptcy risk. In this period, there was no significant change in stock prices of companies in general. Panel data regression analysis results also did not provide evidence for the existence of a statistically significant relationship between the likelihood of bankruptcy and its effect on prices. Predicting the risk of bankruptcy is of vital importance for both companies and shareholders. Findings will make a significant contribution in determining strategy for companies in this sector. The results from the other side will also guide investors on their share preferences.

Suggested Citation

  • Samuray Karaca & Ercan Özen, 2017. "Financial Failure Estimation of Companies in BIST Tourism Index by Altman Model and its Effect on Market Prices," BRAND. Broad Research in Accounting, Negotiation, and Distribution, EduSoft Publishing, vol. 8(2), pages 11-23.
  • Handle: RePEc:bra:journl:v:8:y:2017:i:2:p:11-23
    as

    Download full text from publisher

    File URL: http://www.edusoft.ro/brand/RePEc/bra/journl/brand_8.2_Karaca.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koc, Erdogan & Boz, Hakan, 2014. "Psychoneurobiochemistry of tourism marketing," Tourism Management, Elsevier, vol. 44(C), pages 140-148.
    2. Hakan BOZ, & Özer YILMAZ, 2017. "An Eye Tracker Analysis Of The Influence Of Applicant Attractiveness On Employee Recruitment Process: A Neuromarketing Study," EcoForum, "Stefan cel Mare" University of Suceava, Romania, Faculty of Economics and Public Administration - Economy, Business Administration and Tourism Department., vol. 6(1), pages 1-30, January.
    3. John M. Griffin & Michael L. Lemmon, 2002. "Book‐to‐Market Equity, Distress Risk, and Stock Returns," Journal of Finance, American Finance Association, vol. 57(5), pages 2317-2336, October.
    4. Wu, Y. & Gaunt, C. & Gray, S., 2010. "A comparison of alternative bankruptcy prediction models," Journal of Contemporary Accounting and Economics, Elsevier, vol. 6(1), pages 34-45.
    5. Blum, M, 1974. "Failing Company Discriminant-Analysis," Journal of Accounting Research, Wiley Blackwell, vol. 12(1), pages 1-25.
    6. George Allayannis & Gregory W. Brown & Leora F. Klapper, 2003. "Capital Structure and Financial Risk: Evidence from Foreign Debt Use in East Asia," Journal of Finance, American Finance Association, vol. 58(6), pages 2667-2710, December.
    7. Hernandez Tinoco, Mario & Wilson, Nick, 2013. "Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 394-419.
    8. Eduardo Acosta-González & Fernando Fernández-Rodríguez, 2014. "Forecasting Financial Failure of Firms via Genetic Algorithms," Computational Economics, Springer;Society for Computational Economics, vol. 43(2), pages 133-157, February.
    9. Taşkın, Çağatan & Koç, Erdoğan & Boz, Hakan, 2017. "Perceptual Image of Conflict-Ridden Destinations: An EEG and Eye Tracker Analysis," Business and Economics Research Journal, Uludag University, Faculty of Economics and Administrative Sciences, vol. 8(3), pages 533-553, July.
    10. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    11. Neophytou, E. & Charitou, A. & Charalambous, C., 2001. "Predicting Corporate Failure: Empirical Evidence for the UK," Papers 01-173, University of Southampton - Department of Accounting and Management Science.
    12. Meyer, Paul A & Pifer, Howard W, 1970. "Prediction of Bank Failures," Journal of Finance, American Finance Association, vol. 25(4), pages 853-868, September.
    13. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    14. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    15. Pindado, Julio & Rodrigues, Luis & de la Torre, Chabela, 2008. "Estimating financial distress likelihood," Journal of Business Research, Elsevier, vol. 61(9), pages 995-1003, September.
    16. Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    2. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    3. Duc Hong Vo & Binh Ninh Vo Pham & Chi Minh Ho & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in Vietnam," JRFM, MDPI, vol. 12(4), pages 1-17, September.
    4. Sanjay Sehgal & Ritesh Kumar Mishra & Ajay Jaisawal, 2021. "A search for macroeconomic determinants of corporate financial distress," Indian Economic Review, Springer, vol. 56(2), pages 435-461, December.
    5. Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    6. Ashraf, Sumaira & Félix, Elisabete G.S. & Serrasqueiro, Zélia, 2020. "Development and testing of an augmented distress prediction model: A comparative study on a developed and an emerging market," Journal of Multinational Financial Management, Elsevier, vol. 57.
    7. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    8. Kerstin Lopatta & Mario Albert Gloger & Reemda Jaeschke, 2017. "Can Language Predict Bankruptcy? The Explanatory Power of Tone in 10‐K Filings," Accounting Perspectives, John Wiley & Sons, vol. 16(4), pages 315-343, December.
    9. Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.
    10. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    11. Pablo de Llano Monelos & Manuel Rodríguez López & Carlos Piñeiro Sánchez, 2013. "Bankruptcy Prediction Models in Galician companies. Application of Parametric Methodologies and Artificial Intelligence," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(1), pages 117-136.
    12. John Nkwoma Inekwe, 2016. "Financial Distress, Employees’ Welfare and Entrepreneurship Among SMEs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 129(3), pages 1135-1153, December.
    13. John W. Pacey & Toan M. Pham, 1990. "The Predictiveness of Bankruptcy Models: Methodological Problems and Evidence," Australian Journal of Management, Australian School of Business, vol. 15(2), pages 315-337, December.
    14. Inekwe, John Nkwoma & Jin, Yi & Valenzuela, Ma. Rebecca, 2018. "The effects of financial distress: Evidence from US GDP growth," Economic Modelling, Elsevier, vol. 72(C), pages 8-21.
    15. Vo, D.H. & Pham, B.V.-N. & Pham, T.V.-T. & McAleer, M.J., 2019. "Corporate Financial Distress of Industry Level Listings in an Emerging Market," Econometric Institute Research Papers EI2019-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    17. Ciampi, Francesco, 2015. "Corporate governance characteristics and default prediction modeling for small enterprises. An empirical analysis of Italian firms," Journal of Business Research, Elsevier, vol. 68(5), pages 1012-1025.
    18. Onofrei, Mihaela & Lupu, Dan, 2014. "The modelling of forecasting the bankruptcy in Romania," MPRA Paper 95511, University Library of Munich, Germany.
    19. Alessandro Bitetto & Stefano Filomeni & Michele Modina, 2021. "Understanding corporate default using Random Forest: The role of accounting and market information," DEM Working Papers Series 205, University of Pavia, Department of Economics and Management.
    20. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bra:journl:v:8:y:2017:i:2:p:11-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bogdan Patrut (email available below). General contact details of provider: http://brand.edusoft.ro .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.