IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v30y2013icp394-419.html
   My bibliography  Save this article

Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables

Author

Listed:
  • Hernandez Tinoco, Mario
  • Wilson, Nick

Abstract

Using a sample of 23,218company-year observations of listed companies during the period 1980–2011, the paper investigates empirically the utility of combining accounting, market-based and macro-economic data to explain corporate credit risk. The paper develops risk models for listed companies that predict financial distress and bankruptcy. The estimated models use a combination of accounting data, stock market information and proxies for changes in the macro-economic environment. The purpose is to produce models with predictive accuracy, practical value and macro dependent dynamics that have relevance for stress testing. The results show the utility of combining accounting, market and macro-economic data in financial distress prediction models for listed companies. The performance of the estimated models is benchmarked against models built using a neural network (MLP) and against Altman's (1968) original Z-score specification.

Suggested Citation

  • Hernandez Tinoco, Mario & Wilson, Nick, 2013. "Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 394-419.
  • Handle: RePEc:eee:finana:v:30:y:2013:i:c:p:394-419
    DOI: 10.1016/j.irfa.2013.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521913000227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2013.02.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander, Carol & Kaeck, Andreas, 2008. "Regime dependent determinants of credit default swap spreads," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1008-1021, June.
    2. Anderson, Raymond, 2007. "The Credit Scoring Toolkit: Theory and Practice for Retail Credit Risk Management and Decision Automation," OUP Catalogue, Oxford University Press, number 9780199226405.
    3. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    4. Mario A. Cleves, 2002. "From the help desk: Comparing areas under receiver operating characteristic curves from two or more probit or logit models," Stata Journal, StataCorp LP, vol. 2(3), pages 301-313, August.
    5. Ericsson, Jan & Jacobs, Kris & Oviedo, Rodolfo, 2009. "The Determinants of Credit Default Swap Premia," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(1), pages 109-132, February.
    6. Mella-Barral, Pierre & Perraudin, William, 1997. "Strategic Debt Service," Journal of Finance, American Finance Association, vol. 52(2), pages 531-556, June.
    7. Paul Asquith & Robert Gertner & David Scharfstein, 1994. "Anatomy of Financial Distress: An Examination of Junk-Bond Issuers," The Quarterly Journal of Economics, Oxford University Press, vol. 109(3), pages 625-658.
    8. Mare, Davide Salvatore, 2015. "Contribution of macroeconomic factors to the prediction of small bank failures," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 39(C), pages 25-39.
    9. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    10. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    11. Edward I. Altman & Gabriele Sabato, 2007. "Modelling Credit Risk for SMEs: Evidence from the U.S. Market," Abacus, Accounting Foundation, University of Sydney, vol. 43(3), pages 332-357, September.
    12. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    13. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    14. Geske, Robert, 1977. "The Valuation of Corporate Liabilities as Compound Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 541-552, November.
    15. Wruck, Karen Hopper, 1990. "Financial distress, reorganization, and organizational efficiency," Journal of Financial Economics, Elsevier, vol. 27(2), pages 419-444, October.
    16. Reisz, Alexander S. & Perlich, Claudia, 2007. "A market-based framework for bankruptcy prediction," Journal of Financial Stability, Elsevier, vol. 3(2), pages 85-131, July.
    17. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    18. Gregor Andrade & Steven N. Kaplan, 1998. "How Costly is Financial (Not Economic) Distress? Evidence from Highly Leveraged Transactions that Became Distressed," Journal of Finance, American Finance Association, vol. 53(5), pages 1443-1493, October.
    19. Agarwal, Vineet & Taffler, Richard, 2008. "Comparing the performance of market-based and accounting-based bankruptcy prediction models," Journal of Banking & Finance, Elsevier, vol. 32(8), pages 1541-1551, August.
    20. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    21. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    22. Maria Vassalou & Yuhang Xing, 2004. "Default Risk in Equity Returns," Journal of Finance, American Finance Association, vol. 59(2), pages 831-868, April.
    23. Sudheer Chava & Robert A. Jarrow, 2008. "Bankruptcy Prediction with Industry Effects," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 21, pages 517-549, World Scientific Publishing Co. Pte. Ltd..
    24. Chae Woo Nam & Tong Suk Kim & Nam Jung Park & Hoe Kyung Lee, 2008. "Bankruptcy prediction using a discrete-time duration model incorporating temporal and macroeconomic dependencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 493-506.
    25. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    26. Ilia D. Dichev, 1998. "Is the Risk of Bankruptcy a Systematic Risk?," Journal of Finance, American Finance Association, vol. 53(3), pages 1131-1147, June.
    27. Sreedhar T. Bharath & Tyler Shumway, 2008. "Forecasting Default with the Merton Distance to Default Model," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1339-1369, May.
    28. Pindado, Julio & Rodrigues, Luis & de la Torre, Chabela, 2008. "Estimating financial distress likelihood," Journal of Business Research, Elsevier, vol. 61(9), pages 995-1003, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duc Hong Vo & Binh Ninh Vo Pham & Chi Minh Ho & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in Vietnam," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 12(4), pages 1-17, September.
    2. John Nkwoma Inekwe, 2016. "Financial Distress, Employees’ Welfare and Entrepreneurship Among SMEs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 129(3), pages 1135-1153, December.
    3. B Korcan Ak & Patricia M Dechow & Yuan Sun & Annika Yu Wang, 2013. "The use of financial ratio models to help investors predict and interpret significant corporate events," Australian Journal of Management, Australian School of Business, vol. 38(3), pages 553-598, December.
    4. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    5. Vo, D.H. & Pham, B.V.-N. & Pham, T.V.-T. & McAleer, M.J., 2019. "Corporate Financial Distress of Industry Level Listings in an Emerging Market," Econometric Institute Research Papers EI2019-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Antonio Trujillo-Ponce & Reyes Samaniego-Medina & Clara Cardone-Riportella, 2014. "Examining what best explains corporate credit risk: accounting-based versus market-based models," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 15(2), pages 253-276, April.
    7. Bauer, Julian & Agarwal, Vineet, 2014. "Are hazard models superior to traditional bankruptcy prediction approaches? A comprehensive test," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 432-442.
    8. Evangelos C. Charalambakis & Ian Garrett, 2019. "On corporate financial distress prediction: What can we learn from private firms in a developing economy? Evidence from Greece," Review of Quantitative Finance and Accounting, Springer, vol. 52(2), pages 467-491, February.
    9. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    10. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
    11. Elizabeth Gutierrez & Jake Krupa & Miguel Minutti-Meza & Maria Vulcheva, 0. "Do going concern opinions provide incremental information to predict corporate defaults?," Review of Accounting Studies, Springer, vol. 0, pages 1-38.
    12. Marta Gómez-Puig & Simón Sosvilla-Rivero & Manish K. Singh, 2018. "“Incorporating creditors' seniority into contingent claim models:Application to peripheral euro area countries”," IREA Working Papers 201803, University of Barcelona, Research Institute of Applied Economics, revised Feb 2018.
    13. Elsayed, Mohamed & Elshandidy, Tamer, 2020. "Do narrative-related disclosures predict corporate failure? Evidence from UK non-financial publicly quoted firms," International Review of Financial Analysis, Elsevier, vol. 71(C).
    14. Tian, Shaonan & Yu, Yan & Guo, Hui, 2015. "Variable selection and corporate bankruptcy forecasts," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 89-100.
    15. Elizabeth Gutierrez & Jake Krupa & Miguel Minutti-Meza & Maria Vulcheva, 2020. "Do going concern opinions provide incremental information to predict corporate defaults?," Review of Accounting Studies, Springer, vol. 25(4), pages 1344-1381, December.
    16. Cathcart, Lara & Dufour, Alfonso & Rossi, Ludovico & Varotto, Simone, 2020. "The differential impact of leverage on the default risk of small and large firms," Journal of Corporate Finance, Elsevier, vol. 60(C).
    17. Andrikopoulos, Panagiotis & Khorasgani, Amir, 2018. "Predicting unlisted SMEs' default: Incorporating market information on accounting-based models for improved accuracy," The British Accounting Review, Elsevier, vol. 50(5), pages 559-573.
    18. Pham Vo Ninh, Binh & Do Thanh, Trung & Vo Hong, Duc, 2018. "Financial distress and bankruptcy prediction: An appropriate model for listed firms in Vietnam," Economic Systems, Elsevier, vol. 42(4), pages 616-624.
    19. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    20. Koresh Galil & Neta Gilat, 2019. "Predicting Default More Accurately: To Proxy or Not to Proxy for Default?," International Review of Finance, International Review of Finance Ltd., vol. 19(4), pages 731-758, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:30:y:2013:i:c:p:394-419. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.