IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v30y2013icp394-419.html
   My bibliography  Save this article

Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables

Author

Listed:
  • Hernandez Tinoco, Mario
  • Wilson, Nick

Abstract

Using a sample of 23,218company-year observations of listed companies during the period 1980–2011, the paper investigates empirically the utility of combining accounting, market-based and macro-economic data to explain corporate credit risk. The paper develops risk models for listed companies that predict financial distress and bankruptcy. The estimated models use a combination of accounting data, stock market information and proxies for changes in the macro-economic environment. The purpose is to produce models with predictive accuracy, practical value and macro dependent dynamics that have relevance for stress testing. The results show the utility of combining accounting, market and macro-economic data in financial distress prediction models for listed companies. The performance of the estimated models is benchmarked against models built using a neural network (MLP) and against Altman's (1968) original Z-score specification.

Suggested Citation

  • Hernandez Tinoco, Mario & Wilson, Nick, 2013. "Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 394-419.
  • Handle: RePEc:eee:finana:v:30:y:2013:i:c:p:394-419
    DOI: 10.1016/j.irfa.2013.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521913000227
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander, Carol & Kaeck, Andreas, 2008. "Regime dependent determinants of credit default swap spreads," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1008-1021, June.
    2. Anderson, Raymond, 2007. "The Credit Scoring Toolkit: Theory and Practice for Retail Credit Risk Management and Decision Automation," OUP Catalogue, Oxford University Press, number 9780199226405.
    3. Wruck, Karen Hopper, 1990. "Financial distress, reorganization, and organizational efficiency," Journal of Financial Economics, Elsevier, vol. 27(2), pages 419-444, October.
    4. Reisz, Alexander S. & Perlich, Claudia, 2007. "A market-based framework for bankruptcy prediction," Journal of Financial Stability, Elsevier, vol. 3(2), pages 85-131, July.
    5. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    6. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    7. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    8. Gregor Andrade & Steven N. Kaplan, 1998. "How Costly is Financial (Not Economic) Distress? Evidence from Highly Leveraged Transactions that Became Distressed," Journal of Finance, American Finance Association, vol. 53(5), pages 1443-1493, October.
    9. Agarwal, Vineet & Taffler, Richard, 2008. "Comparing the performance of market-based and accounting-based bankruptcy prediction models," Journal of Banking & Finance, Elsevier, vol. 32(8), pages 1541-1551, August.
    10. Mario A. Cleves, 2002. "From the help desk: Comparing areas under receiver operating characteristic curves from two or more probit or logit models," Stata Journal, StataCorp LP, vol. 2(3), pages 301-313, August.
    11. Ericsson, Jan & Jacobs, Kris & Oviedo, Rodolfo, 2009. "The Determinants of Credit Default Swap Premia," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(1), pages 109-132, February.
    12. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    13. Mella-Barral, Pierre & Perraudin, William, 1997. "Strategic Debt Service," Journal of Finance, American Finance Association, vol. 52(2), pages 531-556, June.
    14. Paul Asquith & Robert Gertner & David Scharfstein, 1994. "Anatomy of Financial Distress: An Examination of Junk-Bond Issuers," The Quarterly Journal of Economics, Oxford University Press, vol. 109(3), pages 625-658.
    15. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    16. Maria Vassalou & Yuhang Xing, 2004. "Default Risk in Equity Returns," Journal of Finance, American Finance Association, vol. 59(2), pages 831-868, April.
    17. Chae Woo Nam & Tong Suk Kim & Nam Jung Park & Hoe Kyung Lee, 2008. "Bankruptcy prediction using a discrete-time duration model incorporating temporal and macroeconomic dependencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 493-506.
    18. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    19. Edward I. Altman & Gabriele Sabato, 2007. "Modelling Credit Risk for SMEs: Evidence from the U.S. Market," Abacus, Accounting Foundation, University of Sydney, vol. 43(3), pages 332-357, September.
    20. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    21. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    22. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    23. Ilia D. Dichev, 1998. "Is the Risk of Bankruptcy a Systematic Risk?," Journal of Finance, American Finance Association, vol. 53(3), pages 1131-1147, June.
    24. Sreedhar T. Bharath & Tyler Shumway, 2008. "Forecasting Default with the Merton Distance to Default Model," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1339-1369, May.
    25. Pindado, Julio & Rodrigues, Luis & de la Torre, Chabela, 2008. "Estimating financial distress likelihood," Journal of Business Research, Elsevier, vol. 61(9), pages 995-1003, September.
    26. Cleves, Mario A., 2002. "From the help desk: Comparing areas under receiver operating characteristic curves from two or more probit or logit models," Stata Journal, StataCorp LP, vol. 2(3), pages 1-13.
    27. Geske, Robert, 1977. "The Valuation of Corporate Liabilities as Compound Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 541-552, November.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:30:y:2013:i:c:p:394-419. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.