IDEAS home Printed from
   My bibliography  Save this article

Forecasting Default with the Merton Distance to Default Model


  • Sreedhar T. Bharath
  • Tyler Shumway


We examine the accuracy and contribution of the Merton distance to default (DD) model, which is based on Merton's (1974) bond pricing model. We compare the model to a "naïve" alternative, which uses the functional form suggested by the Merton model but does not solve the model for an implied probability of default. We find that the naïve predictor performs slightly better in hazard models and in out-of-sample forecasts than both the Merton DD model and a reduced-form model that uses the same inputs. Several other forecasting variables are also important predictors, and fitted values from an expanded hazard model outperform Merton DD default probabilities out of sample. Implied default probabilities from credit default swaps and corporate bond yield spreads are only weakly correlated with Merton DD probabilities after adjusting for agency ratings and bond characteristics. We conclude that while the Merton DD model does not produce a sufficient statistic for the probability of default, its functional form is useful for forecasting defaults. The Author 2008. Published by Oxford University Press on behalf of The Society for Financial Studies. All rights reserved. For Permissions, please email:, Oxford University Press.

Suggested Citation

  • Sreedhar T. Bharath & Tyler Shumway, 2008. "Forecasting Default with the Merton Distance to Default Model," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1339-1369, May.
  • Handle: RePEc:oup:rfinst:v:21:y:2008:i:3:p:1339-1369

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:rfinst:v:21:y:2008:i:3:p:1339-1369. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.