IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v34y2006i17p3218-3232.html
   My bibliography  Save this item

Beyond the learning curve: factors influencing cost reductions in photovoltaics

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
  2. Bosetti, Valentina & Catenacci, Michela & Fiorese, Giulia & Verdolini, Elena, 2012. "The future prospect of PV and CSP solar technologies: An expert elicitation survey," Energy Policy, Elsevier, vol. 49(C), pages 308-317.
  3. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
  4. Wang, Yongli & Gao, Mingchen & Wang, Jingyan & Wang, Shuo & Liu, Yang & Zhu, Jinrong & Tan, Zhongfu, 2021. "Measurement and key influencing factors of the economic benefits for China’s photovoltaic power generation: A LCOE-based hybrid model," Renewable Energy, Elsevier, vol. 169(C), pages 935-952.
  5. Parrado, C. & Girard, A. & Simon, F. & Fuentealba, E., 2016. "2050 LCOE (Levelized Cost of Energy) projection for a hybrid PV (photovoltaic)-CSP (concentrated solar power) plant in the Atacama Desert, Chile," Energy, Elsevier, vol. 94(C), pages 422-430.
  6. Dumas, Marion & Rising, James & Urpelainen, Johannes, 2016. "Political competition and renewable energy transitions over long time horizons: A dynamic approach," Ecological Economics, Elsevier, vol. 124(C), pages 175-184.
  7. Tilmann Rave & Ursula Triebswetter & Johann Wackerbauer, 2013. "Koordination von Innovations-, Energie- und Umweltpolitik," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 61, October.
  8. Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
  9. Andrew Chapman & Timothy Fraser & Melanie Dennis, 2019. "Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis," Social Sciences, MDPI, vol. 8(5), pages 1-18, April.
  10. Mauleón, Ignacio, 2016. "Photovoltaic learning rate estimation: Issues and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 507-524.
  11. Severin Borenstein, 2012. "The Private and Public Economics of Renewable Electricity Generation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 67-92, Winter.
  12. Defeuilley, Christophe, 2019. "Energy transition and the future(s) of the electricity sector," Utilities Policy, Elsevier, vol. 57(C), pages 97-105.
  13. Shrimali, Gireesh & Jenner, Steffen, 2013. "The impact of state policy on deployment and cost of solar photovoltaic technology in the U.S.: A sector-specific empirical analysis," Renewable Energy, Elsevier, vol. 60(C), pages 679-690.
  14. Zhang, Shichen & Zhang, Jianxiong, 2018. "Contract preference with stochastic cost learning in a two-period supply chain under asymmetric information," International Journal of Production Economics, Elsevier, vol. 196(C), pages 226-247.
  15. Seel, Joachim & Barbose, Galen L. & Wiser, Ryan H., 2014. "An analysis of residential PV system price differences between the United States and Germany," Energy Policy, Elsevier, vol. 69(C), pages 216-226.
  16. Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
  17. Beliën, Jeroen & De Boeck, Liesje & Colpaert, Jan & Cooman, Gert, 2013. "The best time to invest in photovoltaic panels in Flanders," Renewable Energy, Elsevier, vol. 50(C), pages 348-358.
  18. Schauf, Magnus & Schwenen, Sebastian, 2021. "Mills of progress grind slowly? Estimating learning rates for onshore wind energy," Energy Economics, Elsevier, vol. 104(C).
  19. Casey, Gregory, "undated". "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259959, Agricultural and Applied Economics Association.
  20. Magda Moner‐Girona & Daniel Puig & Yacob Mulugetta & Ioannis Kougias & Jafaru AbdulRahman & Sándor Szabó, 2018. "Next generation interactive tool as a backbone for universal access to electricity," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
  21. Peters, Michael & Schmidt, Tobias S. & Wiederkehr, David & Schneider, Malte, 2011. "Shedding light on solar technologies'A techno-economic assessment and its policy implications," Energy Policy, Elsevier, vol. 39(10), pages 6422-6439, October.
  22. Elizabeth Baldwin & Yongyang Cai & Karlygash Kuralbayeva, 2018. "To Build or Not to Build? Capital Stocks and Climate Policy," CESifo Working Paper Series 6884, CESifo.
  23. Kiriyama, Eriko & Kajikawa, Yuya & Fujita, Katsuhide & Iwata, Shuichi, 2013. "A lead for transvaluation of global nuclear energy research and funded projects in Japan," Applied Energy, Elsevier, vol. 109(C), pages 145-153.
  24. Trappey, Amy J.C. & Trappey, Charles V. & Liu, Penny H.Y. & Lin, Lee-Cheng & Ou, Jerry J.R., 2013. "A hierarchical cost learning model for developing wind energy infrastructures," International Journal of Production Economics, Elsevier, vol. 146(2), pages 386-391.
  25. Rout, Ullash K. & Akimoto, Keigo & Sano, Fuminori & Tomoda, Toshimasa, 2010. "Introduction of subsidisation in nascent climate-friendly learning technologies and evaluation of its effectiveness," Energy Policy, Elsevier, vol. 38(1), pages 520-532, January.
  26. Zhang, Jingyi & Chang, Nathan & Fagerholm, Cara & Qiu, Ming & Shuai, Ling & Egan, Renate & Yuan, Chris, 2022. "Techno-economic and environmental sustainability of industrial-scale productions of perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  27. Karali, Nihan & Park, Won Young & McNeil, Michael, 2017. "Modeling technological change and its impact on energy savings in the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 202(C), pages 447-458.
  28. Andreas Freytag & Leo Wangler, 2008. "Strategic Trade Policy als Response to Climate Change? The Political Economy of Climate Policy," Jena Economics Research Papers 2008-001, Friedrich-Schiller-University Jena.
  29. Elofsson, Katarina, 2014. "International knowledge diffusion and its impact on the cost-effective clean-up of the Baltic Sea," Working Paper Series 2014:06, Swedish University of Agricultural Sciences, Department Economics.
  30. Finon, D. & Meunier, G., 2012. "Option values of low carbon technology policies: how to combine irreversibility effects and learning-by-doing in decisions," Cambridge Working Papers in Economics 1231, Faculty of Economics, University of Cambridge.
  31. Tian Tang & David Popp, 2014. "The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects," NBER Working Papers 19921, National Bureau of Economic Research, Inc.
  32. del Río, Pablo, 2012. "The dynamic efficiency of feed-in tariffs: The impact of different design elements," Energy Policy, Elsevier, vol. 41(C), pages 139-151.
  33. Saed Alizamir & Francis de Véricourt & Peng Sun, 2016. "Efficient Feed-In-Tariff Policies for Renewable Energy Technologies," Operations Research, INFORMS, vol. 64(1), pages 52-66, February.
  34. Buchholz, Wolfgang & Dippl, Lisa & Eichenseer, Michael, 2019. "Subsidizing renewables as part of taking leadership in international climate policy: The German case," Energy Policy, Elsevier, vol. 129(C), pages 765-773.
  35. Chang, Yusang & Lee, Jinsoo & Yoon, Hyerim, 2012. "Alternative projection of the world energy consumption-in comparison with the 2010 international energy outlook," Energy Policy, Elsevier, vol. 50(C), pages 154-160.
  36. Martin Kalthaus, 2017. "Identifying technological sub-trajectories in photovoltaic patents," Jena Economics Research Papers 2017-010, Friedrich-Schiller-University Jena.
  37. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
  38. Hendry, Chris & Harborne, Paul, 2011. "Changing the view of wind power development: More than "bricolage"," Research Policy, Elsevier, vol. 40(5), pages 778-789, June.
  39. Farmer, J. Doyne & Lafond, François, 2016. "How predictable is technological progress?," Research Policy, Elsevier, vol. 45(3), pages 647-665.
  40. Till Requate, 2015. "Green tradable certificates versus feed-in tariffs in the promotion of renewable energy shares," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(2), pages 211-239, April.
  41. Nicodemus, Julia Haltiwanger, 2018. "Technological learning and the future of solar H2: A component learning comparison of solar thermochemical cycles and electrolysis with solar PV," Energy Policy, Elsevier, vol. 120(C), pages 100-109.
  42. Winkler, Harald & Hughes, Alison & Haw, Mary, 2009. "Technology learning for renewable energy: Implications for South Africa's long-term mitigation scenarios," Energy Policy, Elsevier, vol. 37(11), pages 4987-4996, November.
  43. Clas‐Otto Wene, 2016. "Future energy system development depends on past learning opportunities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(1), pages 16-32, January.
  44. Kantamneni, Abhilash & Winkler, Richelle & Gauchia, Lucia & Pearce, Joshua M., 2016. "Emerging economic viability of grid defection in a northern climate using solar hybrid systems," Energy Policy, Elsevier, vol. 95(C), pages 378-389.
  45. Lafond, François & Bailey, Aimee Gotway & Bakker, Jan David & Rebois, Dylan & Zadourian, Rubina & McSharry, Patrick & Farmer, J. Doyne, 2018. "How well do experience curves predict technological progress? A method for making distributional forecasts," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 104-117.
  46. Nemet, Gregory F., 2009. "Interim monitoring of cost dynamics for publicly supported energy technologies," Energy Policy, Elsevier, vol. 37(3), pages 825-835, March.
  47. Weigelt, Carmen & Lu, Shaohua & Verhaal, J. Cameron, 2021. "Blinded by the sun: The role of prosumers as niche actors in incumbent firms’ adoption of solar power during sustainability transitions," Research Policy, Elsevier, vol. 50(9).
  48. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2016. "The rationales for technology-specific renewable energy support: Conceptual arguments and their relevance for Germany," UFZ Discussion Papers 4/2016, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
  49. Newbery, David M., 2016. "Towards a green energy economy? The EU Energy Union’s transition to a low-carbon zero subsidy electricity system – Lessons from the UK’s Electricity Market Reform," Applied Energy, Elsevier, vol. 179(C), pages 1321-1330.
  50. Koichiro Sano & Yasunobu Tomoda, 2019. "Persistent income gaps in an occupational choice model with multi‐goods," Australian Economic Papers, Wiley Blackwell, vol. 58(1), pages 1-20, March.
  51. Avril, S. & Mansilla, C. & Busson, M. & Lemaire, T., 2012. "Photovoltaic energy policy: Financial estimation and performance comparison of the public support in five representative countries," Energy Policy, Elsevier, vol. 51(C), pages 244-258.
  52. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Sgobbi, Alessandra & Tavoni, Massimo, 2009. "Optimal energy investment and R&D strategies to stabilize atmospheric greenhouse gas concentrations," Resource and Energy Economics, Elsevier, vol. 31(2), pages 123-137, May.
  53. Johannes Urpelainen, 2014. "Sinking costs to increase participation: technology deployment agreements enhance climate cooperation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 16(3), pages 229-240, July.
  54. Prehoda, Emily W. & Schelly, Chelsea & Pearce, Joshua M., 2017. "U.S. strategic solar photovoltaic-powered microgrid deployment for enhanced national security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 167-175.
  55. Tian Tang & David Popp, 2014. "The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects," CESifo Working Paper Series 4705, CESifo.
  56. Bolinger, Mark & Wiser, Ryan, 2012. "Understanding wind turbine price trends in the U.S. over the past decade," Energy Policy, Elsevier, vol. 42(C), pages 628-641.
  57. Wang, Nan & Akimoto, Keigo & Nemet, Gregory F., 2021. "What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects," Energy Policy, Elsevier, vol. 158(C).
  58. Verdolini, Elena & Anadon, Laura Diaz & Lu, Jiaqi & Nemet, Gregory F., 2015. "The effects of expert selection, elicitation design, and R&D assumptions on experts' estimates of the future costs of photovoltaics," Energy Policy, Elsevier, vol. 80(C), pages 233-243.
  59. Grau, Thilo & Huo, Molin & Neuhoff, Karsten, 2012. "Survey of photovoltaic industry and policy in Germany and China," Energy Policy, Elsevier, vol. 51(C), pages 20-37.
  60. Johannes Mauritzen, 2017. "Cost, Contractors and Scale: An Empirical Analysis of the California Solar Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
  61. Satoshi Myojo & Hiroshi Ohashi, 2014. "Effects of Consumer Subsidies for Renewable Energy on Industry Growth and Welfare: Japanese Solar Energy," CIRJE F-Series CIRJE-F-925, CIRJE, Faculty of Economics, University of Tokyo.
  62. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng & Vaz-Serra, Paulo, 2022. "Economic and environmental impacts of public investment in clean energy RD&D," Energy Policy, Elsevier, vol. 168(C).
  63. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
  64. Sun, Xiaojie & Tang, Wansheng & Zhang, Jianxiong & Chen, Jing, 2021. "The impact of quantity-based cost decline on supplier encroachment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
  65. Azofra, D. & Saenz-Díez, J.C. & Martínez, E. & Jiménez, E. & Blanco, J., 2016. "Ex-post economic analysis of photovoltaic power in the Spanish grid: Alternative scenarios," Renewable Energy, Elsevier, vol. 95(C), pages 98-108.
  66. Li, Jun, 2010. "Decarbonising power generation in China--Is the answer blowing in the wind?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1154-1171, May.
  67. Antoine Dechezleprêtre & David Popp, 2015. "Fiscal and Regulatory Instruments for Clean Technology Development in the European Union," CESifo Working Paper Series 5361, CESifo.
  68. Harashima, Taiji, 2009. "A Theory of Total Factor Productivity and the Convergence Hypothesis: Workers’ Innovations as an Essential Element," MPRA Paper 15508, University Library of Munich, Germany.
  69. Joshua W. Busby & Johannes Urpelainen, 2020. "Following the Leaders? How to Restore Progress in Global Climate Governance," Global Environmental Politics, MIT Press, vol. 20(4), pages 99-121, Autumn.
  70. Matteson, Schuyler & Williams, Eric, 2015. "Residual learning rates in lead-acid batteries: Effects on emerging technologies," Energy Policy, Elsevier, vol. 85(C), pages 71-79.
  71. Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2015. "Bending the learning curve," Energy Economics, Elsevier, vol. 52(S1), pages 86-99.
  72. Nemet, Gregory F. & Lu, Jiaqi & Rai, Varun & Rao, Rohan, 2020. "Knowledge spillovers between PV installers can reduce the cost of installing solar PV," Energy Policy, Elsevier, vol. 144(C).
  73. Breyer, Christian & Birkner, Christian & Meiss, Jan & Goldschmidt, Jan Christoph & Riede, Moritz, 2013. "A top-down analysis: Determining photovoltaics R&D investments from patent analysis and R&D headcount," Energy Policy, Elsevier, vol. 62(C), pages 1570-1580.
  74. Karakaya, Emrah & Nuur, Cali & Hidalgo, Antonio, 2016. "Business model challenge: Lessons from a local solar company," Renewable Energy, Elsevier, vol. 85(C), pages 1026-1035.
  75. Corsatea, Teodora Diana & Giaccaria, Sergio & Arántegui, Roberto Lacal, 2014. "The role of sources of finance on the development of wind technology," Renewable Energy, Elsevier, vol. 66(C), pages 140-149.
  76. McNerney, James & Doyne Farmer, J. & Trancik, Jessika E., 2011. "Historical costs of coal-fired electricity and implications for the future," Energy Policy, Elsevier, vol. 39(6), pages 3042-3054, June.
  77. Polzin, Friedemann & Sanders, Mark & Serebriakova, Alexandra, 2021. "Finance in global transition scenarios: Mapping investments by technology into finance needs by source," Energy Economics, Elsevier, vol. 99(C).
  78. Ferreira, Agmar & Kunh, Sheila S. & Fagnani, Kátia C. & De Souza, Tiago A. & Tonezer, Camila & Dos Santos, Geocris Rodrigues & Coimbra-Araújo, Carlos H., 2018. "Economic overview of the use and production of photovoltaic solar energy in brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 181-191.
  79. Ferioli, F. & Schoots, K. & van der Zwaan, B.C.C., 2009. "Use and limitations of learning curves for energy technology policy: A component-learning hypothesis," Energy Policy, Elsevier, vol. 37(7), pages 2525-2535, July.
  80. Strupeit, Lars, 2017. "An innovation system perspective on the drivers of soft cost reduction for photovoltaic deployment: The case of Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 273-286.
  81. Mikkola, Jani & Lund, Peter D., 2016. "Modeling flexibility and optimal use of existing power plants with large-scale variable renewable power schemes," Energy, Elsevier, vol. 112(C), pages 364-375.
  82. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
  83. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
  84. Oliver O. Apeh & Edson L. Meyer & Ochuko K. Overen, 2022. "Contributions of Solar Photovoltaic Systems to Environmental and Socioeconomic Aspects of National Development—A Review," Energies, MDPI, vol. 15(16), pages 1-28, August.
  85. Bolinger, Mark & Wiser, Ryan, 2009. "Wind power price trends in the United States: Struggling to remain competitive in the face of strong growth," Energy Policy, Elsevier, vol. 37(3), pages 1061-1071, March.
  86. Enrica De Cian & Valentina Bosetti & Alessandra Sgobbi & Massimo Tavoni, 2009. "The 2008 WITCH Model: New Model Features and Baseline," Working Papers 2009.85, Fondazione Eni Enrico Mattei.
  87. Bell, William & Foster, John, 2012. "Feed-in tariffs for promoting solar PV: progressing from dynamic to allocative efficiency," MPRA Paper 38861, University Library of Munich, Germany, revised 28 Apr 2012.
  88. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
  89. Frondel, Manuel & Ritter, Nolan & Schmidt, Christoph M. & Vance, Colin, 2010. "Economic impacts from the promotion of renewable energy technologies: The German experience," Energy Policy, Elsevier, vol. 38(8), pages 4048-4056, August.
  90. Fischer, Carolyn, 2016. "Strategic Subsidies for Green Goods," RFF Working Paper Series dp-16-12, Resources for the Future.
  91. Deshmukh, Ranjit & Bharvirkar, Ranjit & Gambhir, Ashwin & Phadke, Amol, 2012. "Changing Sunshine: Analyzing the dynamics of solar electricity policies in the global context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5188-5198.
  92. Funk, Jeffrey L. & Magee, Christopher L., 2015. "Rapid improvements with no commercial production: How do the improvements occur?," Research Policy, Elsevier, vol. 44(3), pages 777-788.
  93. Obydenkova, Svetlana V. & Pearce, Joshua M., 2016. "Technical viability of mobile solar photovoltaic systems for indigenous nomadic communities in northern latitudes," Renewable Energy, Elsevier, vol. 89(C), pages 253-267.
  94. Islam Rizvanoghlu, 2016. "Comment on: “Optimal dynamic production from a large oil field in Saudi Arabia”," Empirical Economics, Springer, vol. 51(3), pages 1281-1288, November.
  95. Gireesh Shrimali & Steffen Jenner & Felix Groba & Gabriel Chan & Joe Indvik, 2012. "Have State Renewable Portfolio Standards Really Worked?: Synthesizing Past Policy Assessments," Discussion Papers of DIW Berlin 1258, DIW Berlin, German Institute for Economic Research.
  96. Schoots, K. & Kramer, G.J. & van der Zwaan, B.C.C., 2010. "Technology learning for fuel cells: An assessment of past and potential cost reductions," Energy Policy, Elsevier, vol. 38(6), pages 2887-2897, June.
  97. Ding, Hao & Zhou, Dequn & Zhou, P., 2020. "Optimal policy supports for renewable energy technology development: A dynamic programming model," Energy Economics, Elsevier, vol. 92(C).
  98. Rigter, Jasper & Vidican, Georgeta, 2010. "Cost and optimal feed-in tariff for small scale photovoltaic systems in China," Energy Policy, Elsevier, vol. 38(11), pages 6989-7000, November.
  99. Paul Lehmann & Patrik Söderholm, 2018. "Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 475-505, October.
  100. Andres, Pia, 2023. "Industrial policy and global public goods provision: rethinking the environmental trade agreement," LSE Research Online Documents on Economics 117899, London School of Economics and Political Science, LSE Library.
  101. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.
  102. Jägemann, Cosima & Fürsch, Michaela & Hagspiel, Simeon & Nagl, Stephan, 2013. "Decarbonizing Europe's power sector by 2050 — Analyzing the economic implications of alternative decarbonization pathways," Energy Economics, Elsevier, vol. 40(C), pages 622-636.
  103. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
  104. Pfeifer, Antun & Krajačić, Goran & Ljubas, Davor & Duić, Neven, 2019. "Increasing the integration of solar photovoltaics in energy mix on the road to low emissions energy system – Economic and environmental implications," Renewable Energy, Elsevier, vol. 143(C), pages 1310-1317.
  105. Das, Saptarshi & Hittinger, Eric & Williams, Eric, 2020. "Learning is not enough: Diminishing marginal revenues and increasing abatement costs of wind and solar," Renewable Energy, Elsevier, vol. 156(C), pages 634-644.
  106. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  107. Mirjam Leloux & Saskia Harkema & Florentin Popescu, 2015. "Accelerating The Adoption Process Of Renewable Energy Sources Among Smes," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 247-255, July.
  108. Gillingham, Kenneth, 2009. "Economic efficiency of solar hot water policy in New Zealand," Energy Policy, Elsevier, vol. 37(9), pages 3336-3347, September.
  109. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
  110. Sakti, Apurba & Azevedo, Inês M.L. & Fuchs, Erica R.H. & Michalek, Jeremy J. & Gallagher, Kevin G. & Whitacre, Jay F., 2017. "Consistency and robustness of forecasting for emerging technologies: The case of Li-ion batteries for electric vehicles," Energy Policy, Elsevier, vol. 106(C), pages 415-426.
  111. Li, Sheng & Zhang, Xiaosong & Gao, Lin & Jin, Hongguang, 2012. "Learning rates and future cost curves for fossil fuel energy systems with CO2 capture: Methodology and case studies," Applied Energy, Elsevier, vol. 93(C), pages 348-356.
  112. Biondi, Tommaso & Moretto, Michele, 2015. "Solar Grid Parity dynamics in Italy: A real option approach," Energy, Elsevier, vol. 80(C), pages 293-302.
  113. Strupeit, Lars & Neij, Lena, 2017. "Cost dynamics in the deployment of photovoltaics: Insights from the German market for building-sited systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 948-960.
  114. Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
  115. Leibowicz, Benjamin D., 2015. "Growth and competition in renewable energy industries: Insights from an integrated assessment model with strategic firms," Energy Economics, Elsevier, vol. 52(PA), pages 13-25.
  116. Haase, Rachel & Bielicki, Jeffrey & Kuzma, Jennifer, 2013. "Innovation in emerging energy technologies: A case study analysis to inform the path forward for algal biofuels," Energy Policy, Elsevier, vol. 61(C), pages 1595-1607.
  117. Hoppmann, Joern & Volland, Jonas & Schmidt, Tobias S. & Hoffmann, Volker H., 2014. "The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1101-1118.
  118. Dinica, Valentina, 2011. "Renewable electricity production costs--A framework to assist policy-makers' decisions on price support," Energy Policy, Elsevier, vol. 39(7), pages 4153-4167, July.
  119. Mulder, Grietus & Six, Daan & Claessens, Bert & Broes, Thijs & Omar, Noshin & Mierlo, Joeri Van, 2013. "The dimensioning of PV-battery systems depending on the incentive and selling price conditions," Applied Energy, Elsevier, vol. 111(C), pages 1126-1135.
  120. Berry, Stephen & Davidson, Kathryn, 2016. "Improving the economics of building energy code change: A review of the inputs and assumptions of economic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 157-166.
  121. Pillai, Unni & McLaughlin, Jamison, 2013. "A model of competition in the solar panel industry," Energy Economics, Elsevier, vol. 40(C), pages 32-39.
  122. Andres, Pia, 2022. "Was the trade war justified? Solar PV innovation in Europe and the impact of the ‘China shock’," LSE Research Online Documents on Economics 116943, London School of Economics and Political Science, LSE Library.
  123. Héctor M. Núñez, 2013. "How Relevant Has Been the Learning-by-Doing for Brazilian Sugarcane Ethanol Production?," Working papers DTE 552, CIDE, División de Economía.
  124. Mundada, Aishwarya S. & Shah, Kunal K. & Pearce, J.M., 2016. "Levelized cost of electricity for solar photovoltaic, battery and cogen hybrid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 692-703.
  125. Tu, Qiang & Mo, Jianlei & Betz, Regina & Cui, Lianbiao & Fan, Ying & Liu, Yu, 2020. "Achieving grid parity of solar PV power in China- The role of Tradable Green Certificate," Energy Policy, Elsevier, vol. 144(C).
  126. Parrado, C. & Marzo, A. & Fuentealba, E. & Fernández, A.G., 2016. "2050 LCOE improvement using new molten salts for thermal energy storage in CSP plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 505-514.
  127. Baldwin, Elizabeth & Cai, Yongyang & Kuralbayeva, Karlygash, 2020. "To build or not to build? Capital stocks and climate policy∗," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
  128. Tibebu, Tiruwork B. & Hittinger, Eric & Miao, Qing & Williams, Eric, 2021. "What is the optimal subsidy for residential solar?," Energy Policy, Elsevier, vol. 155(C).
  129. Kim, Hansung & Cheon, Hyungkyu & Ahn, Young-Hwan & Choi, Dong Gu, 2019. "Uncertainty quantification and scenario generation of future solar photovoltaic price for use in energy system models," Energy, Elsevier, vol. 168(C), pages 370-379.
  130. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
  131. Hong, Sungjun & Chung, Yanghon & Woo, Chungwon, 2015. "Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea," Energy, Elsevier, vol. 79(C), pages 80-89.
  132. repec:hal:spmain:info:hdl:2441/f6h8764enu2lskk9p4oq2cqb0 is not listed on IDEAS
  133. Wei, Max & Smith, Sarah Josephine & Sohn, Michael D., 2017. "Non-constant learning rates in retrospective experience curve analyses and their correlation to deployment programs," Energy Policy, Elsevier, vol. 107(C), pages 356-369.
  134. Miranda, Raul F.C. & Szklo, Alexandre & Schaeffer, Roberto, 2015. "Technical-economic potential of PV systems on Brazilian rooftops," Renewable Energy, Elsevier, vol. 75(C), pages 694-713.
  135. Benson, Christopher L. & Magee, Christopher L., 2014. "On improvement rates for renewable energy technologies: Solar PV, wind turbines, capacitors, and batteries," Renewable Energy, Elsevier, vol. 68(C), pages 745-751.
  136. Andres, Pia, 2023. "Industrial policy and global public goods provision: rethinking the environmental trade agreement," LSE Research Online Documents on Economics 117900, London School of Economics and Political Science, LSE Library.
  137. de Vries, Bert J.M. & van Vuuren, Detlef P. & Hoogwijk, Monique M., 2007. "Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach," Energy Policy, Elsevier, vol. 35(4), pages 2590-2610, April.
  138. van Velzen, Arjan & Annema, Jan Anne & van de Kaa, Geerten & van Wee, Bert, 2019. "Proposing a more comprehensive future total cost of ownership estimation framework for electric vehicles," Energy Policy, Elsevier, vol. 129(C), pages 1034-1046.
  139. Brown, James & Hendry, Chris, 2009. "Public demonstration projects and field trials: Accelerating commercialisation of sustainable technology in solar photovoltaics," Energy Policy, Elsevier, vol. 37(7), pages 2560-2573, July.
  140. Elofsson, Katarina & Gren, Ing-Marie, 2014. "Cost-efficient climate policies for interdependent and uncertain carbon pools," Working Paper Series 2014:7, Swedish University of Agricultural Sciences, Department Economics.
  141. Choi, Donghyun & Kim, Yeong Jae, 2023. "Local and global experience curves for lumpy and granular energy technologies," Energy Policy, Elsevier, vol. 174(C).
  142. Li, Jun, 2009. "Scaling up concentrating solar thermal technology in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2051-2060, October.
  143. Bushnell, James, 2010. "Building blocks: investment in renewable and non-renewable technologies," ISU General Staff Papers 201005250700001113, Iowa State University, Department of Economics.
  144. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
  145. Iyer, Gokul C. & Clarke, Leon E. & Edmonds, James A. & Hultman, Nathan E., 2016. "Do national-level policies to promote low-carbon technology deployment pay off for the investor countries?," Energy Policy, Elsevier, vol. 98(C), pages 400-411.
  146. Linn, Joshua & McConnell, Virginia, 2019. "Interactions between federal and state policies for reducing vehicle emissions," Energy Policy, Elsevier, vol. 126(C), pages 507-517.
  147. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  148. Paul Kerr & Donald R. Noble & Jonathan Hodges & Henry Jeffrey, 2021. "Implementing Radical Innovation in Renewable Energy Experience Curves," Energies, MDPI, vol. 14(9), pages 1-28, April.
  149. Rout, Ullash K. & Blesl, Markus & Fahl, Ulrich & Remme, Uwe & Voß, Alfred, 2009. "Uncertainty in the learning rates of energy technologies: An experiment in a global multi-regional energy system model," Energy Policy, Elsevier, vol. 37(11), pages 4927-4942, November.
  150. Bistline, John E., 2014. "Energy technology expert elicitations: An application to natural gas turbine efficiencies," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 177-187.
  151. Lacchini, Corrado & Rüther, Ricardo, 2015. "The influence of government strategies on the financial return of capital invested in PV systems located in different climatic zones in Brazil," Renewable Energy, Elsevier, vol. 83(C), pages 786-798.
  152. Berry, Stephen & Davidson, Kathryn, 2015. "Zero energy homes – Are they economically viable?," Energy Policy, Elsevier, vol. 85(C), pages 12-21.
  153. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
  154. Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
  155. Pugh, Graham & Clarke, Leon & Marlay, Robert & Kyle, Page & Wise, Marshall & McJeon, Haewon & Chan, Gabriel, 2011. "Energy R&D portfolio analysis based on climate change mitigation," Energy Economics, Elsevier, vol. 33(4), pages 634-643, July.
  156. Li, Yuqiang & Liao, Shengming & Rao, Zhenghua & Liu, Gang, 2014. "A dynamic assessment based feasibility study of concentrating solar power in China," Renewable Energy, Elsevier, vol. 69(C), pages 34-42.
  157. Lang, Tillmann & Gloerfeld, Erik & Girod, Bastien, 2015. "Don׳t just follow the sun – A global assessment of economic performance for residential building photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 932-951.
  158. Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
  159. Cheo, Ambe Emmanuel & Adelhardt, Nora & Krieger, Tim & Berneiser, Jessica & Sanchez Santillano, Federico Alberto & Bingwa, Brendon & Suleiman, Nischa & Thiele, Patricia & Royes, Alvaro & Gudopp, Danie, 2022. "Agrivoltaics across the water-energy-food-nexus in Africa: Opportunities and challenges for rural communities in Mali," Discussion Paper Series 2022-03, University of Freiburg, Wilfried Guth Endowed Chair for Constitutional Political Economy and Competition Policy.
  160. De Cian, Enrica & Buhl, Johannes & Carrara, Samuel & Michela Bevione, Michela & Monetti, Silvia & Berg, Holger, 2016. "Knowledge Creation between Integrated Assessment Models and Initiative-Based Learning - An Interdisciplinary Approach," MITP: Mitigation, Innovation and Transformation Pathways 249784, Fondazione Eni Enrico Mattei (FEEM).
  161. Torani, Kiran & Rausser, Gordon & Zilberman, David, 2016. "Innovation subsidies versus consumer subsidies: A real options analysis of solar energy," Energy Policy, Elsevier, vol. 92(C), pages 255-269.
  162. Mundada, Aishwarya S. & Prehoda, Emily W. & Pearce, Joshua M., 2017. "U.S. market for solar photovoltaic plug-and-play systems," Renewable Energy, Elsevier, vol. 103(C), pages 255-264.
  163. Shih, Yi-Hsuan & Tseng, Chao-Heng, 2014. "Cost-benefit analysis of sustainable energy development using life-cycle co-benefits assessment and the system dynamics approach," Applied Energy, Elsevier, vol. 119(C), pages 57-66.
  164. Smith, Sarah Josephine & Wei, Max & Sohn, Michael D., 2016. "A retrospective analysis of compact fluorescent lamp experience curves and their correlations to deployment programs," Energy Policy, Elsevier, vol. 98(C), pages 505-512.
  165. Chiara Modanese & Hannu S. Laine & Toni P. Pasanen & Hele Savin & Joshua M. Pearce, 2018. "Economic Advantages of Dry-Etched Black Silicon in Passivated Emitter Rear Cell (PERC) Photovoltaic Manufacturing," Energies, MDPI, vol. 11(9), pages 1-18, September.
  166. Anna Créti & Jérôme Joaug, 2012. "Let the sun shine: Optimal deployment of photovoltaics in Germany," Working Papers hal-00751743, HAL.
  167. Robert J. Brecha & Katherine Schoenenberger & Masaō Ashtine & Randy Koon Koon, 2021. "Ocean Thermal Energy Conversion—Flexible Enabling Technology for Variable Renewable Energy Integration in the Caribbean," Energies, MDPI, vol. 14(8), pages 1-19, April.
  168. Thomassen, Gwenny & Van Passel, Steven & Dewulf, Jo, 2020. "A review on learning effects in prospective technology assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
  169. Myojo, Satoshi & Ohashi, Hiroshi, 2018. "Effects of consumer subsidies for renewable energy on industry growth and social welfare: The case of solar photovoltaic systems in Japan," Journal of the Japanese and International Economies, Elsevier, vol. 48(C), pages 55-67.
  170. Rafael Sánchez-Durán & Julio Barbancho & Joaquín Luque, 2019. "Solar Energy Production for a Decarbonization Scenario in Spain," Sustainability, MDPI, vol. 11(24), pages 1-29, December.
  171. Frondel, Manuel & Ritter, Nolan & Schmidt, Christoph M., 2008. "Germany's solar cell promotion: Dark clouds on the horizon," Energy Policy, Elsevier, vol. 36(11), pages 4198-4204, November.
  172. Yu, C.F. & van Sark, W.G.J.H.M. & Alsema, E.A., 2011. "Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 324-337, January.
  173. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
  174. Candelise, Chiara & Winskel, Mark & Gross, Robert J.K., 2013. "The dynamics of solar PV costs and prices as a challenge for technology forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 96-107.
  175. George A. Gonzalez, 2016. "Transforming Energy: Solving Climate Change with Technology Policy . New York : Cambridge University Press . 360 pages. ISBN 9781107614970, $29.99 paperback. Anthony Patt , 2015 ," Review of Policy Research, Policy Studies Organization, vol. 33(1), pages 111-113, January.
  176. Szabó, Sándor & Jäger-Waldau, Arnulf, 2008. "More competition: Threat or chance for financing renewable electricity?," Energy Policy, Elsevier, vol. 36(4), pages 1436-1447, April.
  177. Rajagopal, Deepak & Zilberman, David, 2013. "On market-mediated emissions and regulations on life cycle emissions," Ecological Economics, Elsevier, vol. 90(C), pages 77-84.
  178. Zhai, Pei, 2013. "Analyzing solar energy policies using a three-tier model: A case study of photovoltaics adoption in Arizona, United States," Renewable Energy, Elsevier, vol. 57(C), pages 317-322.
  179. Xiaoru Zhuang & Xinhai Xu & Wenrui Liu & Wenfu Xu, 2019. "LCOE Analysis of Tower Concentrating Solar Power Plants Using Different Molten-Salts for Thermal Energy Storage in China," Energies, MDPI, vol. 12(7), pages 1-17, April.
  180. Hernández-Moro, J. & Martínez-Duart, J.M., 2012. "CSP electricity cost evolution and grid parities based on the IEA roadmaps," Energy Policy, Elsevier, vol. 41(C), pages 184-192.
  181. Sovacool, Benjamin K. & Gilbert, Alex & Nugent, Daniel, 2014. "Risk, innovation, electricity infrastructure and construction cost overruns: Testing six hypotheses," Energy, Elsevier, vol. 74(C), pages 906-917.
  182. Pillai, Gobind G. & Putrus, Ghanim A. & Georgitsioti, Tatiani & Pearsall, Nicola M., 2014. "Near-term economic benefits from grid-connected residential PV (photovoltaic) systems," Energy, Elsevier, vol. 68(C), pages 832-843.
  183. Wang, Hsiao-Fan & Sung, Meng-Ping & Hsu, Hsin-Wei, 2016. "Complementarity and substitution of renewable energy in target year energy supply-mix plannin–in the case of Taiwan," Energy Policy, Elsevier, vol. 90(C), pages 172-182.
  184. Dong, Andy & Sarkar, Somwrita, 2015. "Forecasting technological progress potential based on the complexity of product knowledge," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 599-610.
  185. Pillai, Unni & Cruz, Kyle, 2013. "Source of Cost Reduction in Solar Photovoltaics," MPRA Paper 46657, University Library of Munich, Germany.
  186. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
  187. Morris, Jennifer F. & Reilly, John M. & Chen, Y.-H. Henry, 2019. "Advanced technologies in energy-economy models for climate change assessment," Energy Economics, Elsevier, vol. 80(C), pages 476-490.
  188. Osmani, Atif & Zhang, Jun & Gonela, Vinay & Awudu, Iddrisu, 2013. "Electricity generation from renewables in the United States: Resource potential, current usage, technical status, challenges, strategies, policies, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 454-472.
  189. Komendantova, Nadejda & Patt, Anthony & Williges, Keith, 2011. "Solar power investment in North Africa: Reducing perceived risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4829-4835.
  190. Tang, Tian, 2018. "Explaining technological change in the US wind industry: Energy policies, technological learning, and collaboration," Energy Policy, Elsevier, vol. 120(C), pages 197-212.
  191. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
  192. Zheng, Cheng & Kammen, Daniel M., 2014. "An innovation-focused roadmap for a sustainable global photovoltaic industry," Energy Policy, Elsevier, vol. 67(C), pages 159-169.
  193. Baker, Erin & Shittu, Ekundayo, 2008. "Uncertainty and endogenous technical change in climate policy models," Energy Economics, Elsevier, vol. 30(6), pages 2817-2828, November.
  194. Shum, Kwok L. & Watanabe, Chihiro, 2008. "Towards a local learning (innovation) model of solar photovoltaic deployment," Energy Policy, Elsevier, vol. 36(2), pages 508-521, February.
  195. Pettersson, Fredrik, 2007. "Carbon pricing and the diffusion of renewable power generation in Eastern Europe: A linear programming approach," Energy Policy, Elsevier, vol. 35(4), pages 2412-2425, April.
  196. Huenteler, Joern & Schmidt, Tobias S. & Ossenbrink, Jan & Hoffmann, Volker H., 2016. "Technology life-cycles in the energy sector — Technological characteristics and the role of deployment for innovation," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 102-121.
  197. Davidson, Carolyn & Steinberg, Daniel, 2013. "Evaluating the impact of third-party price reporting and other drivers on residential photovoltaic price estimates," Energy Policy, Elsevier, vol. 62(C), pages 752-761.
  198. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
  199. Dong, Changgui & Sigrin, Benjamin & Brinkman, Gregory, 2017. "Forecasting residential solar photovoltaic deployment in California," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 251-265.
  200. Gao, Xue & Rai, Varun & Nemet, Gregory F., 2022. "The roles of learning mechanisms in services: Evidence from US residential solar installations," Energy Policy, Elsevier, vol. 167(C).
  201. Gupta, Dipti & Das, Abhiman & Garg, Amit, 2019. "Financial support vis-à-vis share of wind generation: Is there an inflection point?," Energy, Elsevier, vol. 181(C), pages 1064-1074.
  202. Mariano O. Birlain-Escalante & Jorge M. Islas-Samperio & Ángel de la Vega-Navarro & Arturo Morales-Acevedo, 2023. "Development and Upstream Integration of the Photovoltaic Industry Value Chain in Mexico," Energies, MDPI, vol. 16(4), pages 1-27, February.
  203. Barron, Robert & McJeon, Haewon, 2015. "The differential impact of low-carbon technologies on climate change mitigation cost under a range of socioeconomic and climate policy scenarios," Energy Policy, Elsevier, vol. 80(C), pages 264-274.
  204. Jip Leendertse & Frank J. van Rijnsoever & Chris P. Eveleens, 2021. "The sustainable start‐up paradox: Predicting the business and climate performance of start‐ups," Business Strategy and the Environment, Wiley Blackwell, vol. 30(2), pages 1019-1036, February.
  205. Derek Lemoine & Sabine Fuss & Jana Szolgayova & Michael Obersteiner & Daniel Kammen, 2012. "The influence of negative emission technologies and technology policies on the optimal climate mitigation portfolio," Climatic Change, Springer, vol. 113(2), pages 141-162, July.
  206. Arent, Douglas J. & Wise, Alison & Gelman, Rachel, 2011. "The status and prospects of renewable energy for combating global warming," Energy Economics, Elsevier, vol. 33(4), pages 584-593, July.
  207. Olatayo, Kunle Ibukun & Wichers, J. Harry & Stoker, Piet W., 2020. "The advanced and moderate-growth development paths for the viability and future growth of small wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
  208. Fernández-Solas, Álvaro & Micheli, Leonardo & Almonacid, Florencia & Fernández, Eduardo F., 2021. "Optical degradation impact on the spectral performance of photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
  209. Wadhawan, Siddharth R. & Pearce, Joshua M., 2017. "Power and energy potential of mass-scale photovoltaic noise barrier deployment: A case study for the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 125-132.
  210. Carraro, Carlo & Duval, Romain & Bosetti, Valentina & Tavoni, Massimo, 2010. "What Should we Expect from Innovation? A Model-Based Assessment of the Environmental and Mitigation Cost Implications of Climat," CEPR Discussion Papers 7751, C.E.P.R. Discussion Papers.
  211. Subtil Lacerda, Juliana & van den Bergh, Jeroen C.J.M., 2016. "Diversity in solar photovoltaic energy: Implications for innovation and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 331-340.
  212. Feldman, David & Jones-Albertus, Rebecca & Margolis, Robert, 2020. "Quantifying the impact of R&D on PV project financing costs," Energy Policy, Elsevier, vol. 142(C).
  213. Zhang, Da & Chai, Qimin & Zhang, Xiliang & He, Jiankun & Yue, Li & Dong, Xiufen & Wu, Shu, 2012. "Economical assessment of large-scale photovoltaic power development in China," Energy, Elsevier, vol. 40(1), pages 370-375.
  214. Kulatilaka, Nalin & Santiago, Leonardo & Vakili, Pirooz, 2014. "Reallocating risks and returns to scale up adoption of distributed electricity resources," Energy Policy, Elsevier, vol. 69(C), pages 566-574.
  215. Mathews, John A. & Baroni, Paolo, 2013. "The industrial logistic surface: Displaying the impact of energy policy on uptake of new technologies," Energy, Elsevier, vol. 57(C), pages 733-740.
  216. Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
  217. Claudio Del Pero & Federico M. Butera & Luigi Piegari & Marco Faifer & Maddalena Buffoli & Paolo Monzani, 2016. "Characterization and Monitoring of a Self-Constructible Photovoltaic-Based Refrigerator," Energies, MDPI, vol. 9(9), pages 1-14, September.
  218. Gan, Peck Yean & Li, ZhiDong, 2015. "Quantitative study on long term global solar photovoltaic market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 88-99.
  219. O'Shaughnessy, Eric & Barbose, Galen & Wiser, Ryan, 2020. "Patience is a virtue: A data-driven analysis of rooftop solar PV permitting timelines in the United States," Energy Policy, Elsevier, vol. 144(C).
  220. Arthur van Benthem & Kenneth Gillingham & James Sweeney, 2008. "Learning-by-Doing and the Optimal Solar Policy in California," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 131-152.
  221. Szabó, Sándor & Jäger-Waldau, Arnulf & Szabó, László, 2010. "Risk adjusted financial costs of photovoltaics," Energy Policy, Elsevier, vol. 38(7), pages 3807-3819, July.
  222. Thomas Hale & Johannes Urpelainen, 2015. "When and how can unilateral policies promote the international diffusion of environmental policies and clean technology?," Journal of Theoretical Politics, , vol. 27(2), pages 177-205, April.
  223. Colin Davis & Yasunobu Tomoda, 2018. "Competing incremental and breakthrough innovation in a model of product evolution," Journal of Economics, Springer, vol. 123(3), pages 225-247, April.
  224. Wang, Rong & Hasanefendic, Sandra & Von Hauff, Elizabeth & Bossink, Bart, 2022. "The cost of photovoltaics: Re-evaluating grid parity for PV systems in China," Renewable Energy, Elsevier, vol. 194(C), pages 469-481.
  225. Paulo Henrique de Mello Santana, 2015. "Cost-effectiveness as Energy Policy Mechanisms: The Paradox of Technology-neutral and Technology-specific Policies in the Short and Long Term," Working Papers Working Paper 2015-02, Regional Research Institute, West Virginia University.
  226. Kavlak, Goksin & McNerney, James & Trancik, Jessika E., 2018. "Evaluating the causes of cost reduction in photovoltaic modules," Energy Policy, Elsevier, vol. 123(C), pages 700-710.
  227. Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.
  228. Pillai, Unni, 2015. "Drivers of cost reduction in solar photovoltaics," Energy Economics, Elsevier, vol. 50(C), pages 286-293.
  229. Stokes, Leah C., 2013. "The politics of renewable energy policies: The case of feed-in tariffs in Ontario, Canada," Energy Policy, Elsevier, vol. 56(C), pages 490-500.
  230. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
  231. N. Edward Coulson & Zhi Dong & Tien Foo Sing, 2021. "Estimating Supply Functions for Residential Real Estate Attributes," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 49(2), pages 397-432, June.
  232. Koomey, Jonathan & Hultman, Nathan E., 2007. "A reactor-level analysis of busbar costs for US nuclear plants, 1970-2005," Energy Policy, Elsevier, vol. 35(11), pages 5630-5642, November.
  233. Beck, Marisa & Rivers, Nicholas & Wigle, Randall, 2018. "How do learning externalities influence the evaluation of Ontario's renewables support policies?," Energy Policy, Elsevier, vol. 117(C), pages 86-99.
  234. Daniel del Barrio Alvarez & Masahiro Sugiyama, 2020. "A SWOT Analysis of Utility-Scale Solar in Myanmar," Energies, MDPI, vol. 13(4), pages 1-17, February.
  235. Andres, Pia, 2022. "Was the trade war justified? Solar PV innovation in Europe and the impact of the ‘China shock’," LSE Research Online Documents on Economics 116945, London School of Economics and Political Science, LSE Library.
  236. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
  237. Grafström, Jonas & Poudineh, Rahmat, 2021. "A review of problems associated with learning curves for solar and wind power technologies," Ratio Working Papers 347, The Ratio Institute.
  238. Mitscher, Martin & Rüther, Ricardo, 2012. "Economic performance and policies for grid-connected residential solar photovoltaic systems in Brazil," Energy Policy, Elsevier, vol. 49(C), pages 688-694.
  239. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
  240. Polzin, Friedemann & Sanders, Mark, 2020. "How to finance the transition to low-carbon energy in Europe?," Energy Policy, Elsevier, vol. 147(C).
  241. Gernaat, David E.H.J. & de Boer, Harmen-Sytze & Dammeier, Louise C. & van Vuuren, Detlef P., 2020. "The role of residential rooftop photovoltaic in long-term energy and climate scenarios," Applied Energy, Elsevier, vol. 279(C).
  242. Chen, Xiaoguang & Khanna, Madhu, 2012. "Explaining the reductions in US corn ethanol processing costs: Testing competing hypotheses," Energy Policy, Elsevier, vol. 44(C), pages 153-159.
  243. de Mello Santana, Paulo Henrique, 2016. "Cost-effectiveness as energy policy mechanisms: The paradox of technology-neutral and technology-specific policies in the short and long term," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1216-1222.
  244. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2016. "A pilot facility for analysis and simulation of smart microgrids feeding smart buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1247-1255.
  245. Fukui, Rokuhei & Greenfield, Carl & Pogue, Katie & van der Zwaan, Bob, 2017. "Experience curve for natural gas production by hydraulic fracturing," Energy Policy, Elsevier, vol. 105(C), pages 263-268.
  246. Harashima, Taiji, 2011. "A Model of Total Factor Productivity Built on Hayek’s View of Knowledge: What Really Went Wrong with Socialist Planned Economies?," MPRA Paper 29107, University Library of Munich, Germany.
  247. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng, 2022. "Effects of learning curve models on onshore wind and solar PV cost developments in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
  248. Shrimali, Gireesh & Trivedi, Saurabh & Srinivasan, Sandhya & Goel, Shobhit & Nelson, David, 2016. "Cost-effective policies for reaching India's 2022 renewable targets," Renewable Energy, Elsevier, vol. 93(C), pages 255-268.
  249. Taghizadeh-Hesary, Farhad & Yoshino, Naoyuki & Inagaki, Yugo & Morgan, Peter J., 2021. "Analyzing the factors influencing the demand and supply of solar modules in Japan – Does financing matter," International Review of Economics & Finance, Elsevier, vol. 74(C), pages 1-12.
  250. Dong, Changgui & Wiser, Ryan, 2013. "The impact of city-level permitting processes on residential photovoltaic installation prices and development times: An empirical analysis of solar systems in California cities," Energy Policy, Elsevier, vol. 63(C), pages 531-542.
  251. Kotaro Kawajiri & Yusuke Kishita & Yoshikazu Shinohara, 2021. "Life Cycle Assessment of Thermoelectric Generators (TEGs) in an Automobile Application," Sustainability, MDPI, vol. 13(24), pages 1-13, December.
  252. van Blommestein, Kevin & Daim, Tugrul U. & Cho, Yonghee & Sklar, Paul, 2018. "Structuring financial incentives for residential solar electric systems," Renewable Energy, Elsevier, vol. 115(C), pages 28-40.
  253. Harashima, Taiji, 2012. "A Theory of Intelligence and Total Factor Productivity: Value Added Reflects the Fruits of Fluid Intelligence," MPRA Paper 43151, University Library of Munich, Germany.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.