IDEAS home Printed from https://ideas.repec.org/p/ags/feemer/196997.html
   My bibliography  Save this paper

The Effects of Expert Selection, Elicitation Design, and R&D Assumptions on Experts’ Estimates of the Future Costs of Photovoltaics

Author

Listed:
  • Verdolini, Elena
  • Diaz Anadon, Laura
  • Lu, Jiaqi
  • Nemet, Gregory F.

Abstract

Expert elicitations of future energy technology costs can improve energy policy design by explicitly characterizing uncertainty. However, the recent proliferation of expert elicitation studies raises questions about the reliability and comparability of the results. In this paper, we standardize disparate expert elicitation data from five EU and US studies, involving 65 experts, of the future costs of photovoltaics (PV) and evaluate the impact of expert and study characteristics on the elicited metrics. The results for PV suggest that in-person elicitations are associated with more optimistic 2030 PV cost estimates and in some models with a larger range of uncertainty than online elicitations. Unlike in previous results on nuclear power, expert affiliation type and nationality do not affect central estimates. Some specifications suggest that EU experts are more optimistic about breakthroughs, but they are also less confident in that they provide larger ranges of estimates than do US experts. Higher R&D investment is associated with lower future costs. Rather than increasing confidence, high R&D increases uncertainty about future costs, mainly because it improves the base case (low cost) outcomes more than it improves the worst case (high cost) outcomes.

Suggested Citation

  • Verdolini, Elena & Diaz Anadon, Laura & Lu, Jiaqi & Nemet, Gregory F., 2015. "The Effects of Expert Selection, Elicitation Design, and R&D Assumptions on Experts’ Estimates of the Future Costs of Photovoltaics," Energy: Resources and Markets 196997, Fondazione Eni Enrico Mattei (FEEM).
  • Handle: RePEc:ags:feemer:196997
    DOI: 10.22004/ag.econ.196997
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/196997/files/NDL2015-001.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Baker, Erin & Bosetti, Valentina & Anadon, Laura Diaz & Henrion, Max & Aleluia Reis, Lara, 2015. "Future costs of key low-carbon energy technologies: Harmonization and aggregation of energy technology expert elicitation data," Energy Policy, Elsevier, vol. 80(C), pages 219-232.
    2. Baker, Erin & Chon, Haewon & Keisler, Jeffrey, 2009. "Advanced solar R&D: Combining economic analysis with expert elicitations to inform climate policy," Energy Economics, Elsevier, vol. 31(Supplemen), pages 37-49.
    3. Diaz Anadon, Laura & Nemet, Gregory & Verdolini, Elena, 2013. "The Future Costs of Nuclear Power Using Multiple Expert Elicitations: Effects of RD&D and Elicitation Design," Climate Change and Sustainable Development 158747, Fondazione Eni Enrico Mattei (FEEM).
    4. Birkland, Thomas A., 1998. "Focusing Events, Mobilization, and Agenda Setting," Journal of Public Policy, Cambridge University Press, vol. 18(1), pages 53-74, January.
    5. William D. Nordhaus, 2014. "The Perils of the Learning Model for Modeling Endogenous Technological Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    6. Valentina Bosetti & Michela Catenacci & Giulia Fiorese & Elena Verdolini, 2012. "The Future Prospects of PV and CSP Solar Technologies," Review of Environment, Energy and Economics - Re3, Fondazione Eni Enrico Mattei, January.
    7. Bosetti, Valentina & Catenacci, Michela & Fiorese, Giulia & Verdolini, Elena, 2012. "The future prospect of PV and CSP solar technologies: An expert elicitation survey," Energy Policy, Elsevier, vol. 49(C), pages 308-317.
    8. Patrik Söderholm & Ger Klaassen, 2007. "Wind Power in Europe: A Simultaneous Innovation–Diffusion Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(2), pages 163-190, February.
    9. Clarke, Leon & Weyant, John & Edmonds, Jae, 2008. "On the sources of technological change: What do the models assume," Energy Economics, Elsevier, vol. 30(2), pages 409-424, March.
    10. McNerney, James & Doyne Farmer, J. & Trancik, Jessika E., 2011. "Historical costs of coal-fired electricity and implications for the future," Energy Policy, Elsevier, vol. 39(6), pages 3042-3054, June.
    11. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    12. Gregory F. Nemet & Erin Baker, 2009. "Demand Subsidies Versus R&D: Comparing the Uncertain Impacts of Policy on a Pre-commercial Low-carbon Energy Technology," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 49-80.
    13. Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Levi, Peter G. & Pollitt, Michael G., 2015. "Cost trajectories of low carbon electricity generation technologies in the UK: A study of cost uncertainty," Energy Policy, Elsevier, vol. 87(C), pages 48-59.
    2. Martínez-Cruz, Adán L. & Juárez-Torres, Miriam & Guerrero, Santiago, 2017. "Assessing Impacts From Climate Change on Local Social-ecological Systems in Contexts Where Information is Lacking: An Expert Elicitation in the Bolivian Altiplano," Ecological Economics, Elsevier, vol. 137(C), pages 70-82.
    3. Gregory F. Nemet & Laura Diaz Anadon & Elena Verdolini, 2017. "Quantifying the Effects of Expert Selection and Elicitation Design on Experts’ Confidence in Their Judgments About Future Energy Technologies," Risk Analysis, John Wiley & Sons, vol. 37(2), pages 315-330, February.
    4. Zhou, Fan & Page, Lionel & Perrons, Robert K. & Zheng, Zuduo & Washington, Simon, 2019. "Long-term forecasts for energy commodities price: What the experts think," Energy Economics, Elsevier, vol. 84(C).
    5. Laura Diaz Anadon & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2016. "Expert views - and disagreements - about the potential of energy technology R&D," Climatic Change, Springer, vol. 136(3), pages 677-691, June.
    6. Elena Verdolini & Laura Díaz Anadón & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2018. "Future Prospects for Energy Technologies: Insights from Expert Elicitations," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 133-153.
    7. Sakti, Apurba & Azevedo, Inês M.L. & Fuchs, Erica R.H. & Michalek, Jeremy J. & Gallagher, Kevin G. & Whitacre, Jay F., 2017. "Consistency and robustness of forecasting for emerging technologies: The case of Li-ion batteries for electric vehicles," Energy Policy, Elsevier, vol. 106(C), pages 415-426.
    8. Martins, Florinda, 2017. "PV sector in the European Union countries – Clusters and efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 173-177.
    9. Feldman, David & Jones-Albertus, Rebecca & Margolis, Robert, 2020. "Quantifying the impact of R&D on PV project financing costs," Energy Policy, Elsevier, vol. 142(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    2. Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
    3. Barron, Robert & McJeon, Haewon, 2015. "The differential impact of low-carbon technologies on climate change mitigation cost under a range of socioeconomic and climate policy scenarios," Energy Policy, Elsevier, vol. 80(C), pages 264-274.
    4. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, Open Access Journal, vol. 9(11), pages 1-25, November.
    5. Farmer, J. Doyne & Lafond, François, 2016. "How predictable is technological progress?," Research Policy, Elsevier, vol. 45(3), pages 647-665.
    6. Lafond, François & Bailey, Aimee Gotway & Bakker, Jan David & Rebois, Dylan & Zadourian, Rubina & McSharry, Patrick & Farmer, J. Doyne, 2018. "How well do experience curves predict technological progress? A method for making distributional forecasts," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 104-117.
    7. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    8. Clas-Otto Wene, 2016. "Future energy system development depends on past learning opportunities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(1), pages 16-32, January.
    9. Few, Sheridan & Schmidt, Oliver & Offer, Gregory J. & Brandon, Nigel & Nelson, Jenny & Gambhir, Ajay, 2018. "Prospective improvements in cost and cycle life of off-grid lithium-ion battery packs: An analysis informed by expert elicitations," Energy Policy, Elsevier, vol. 114(C), pages 578-590.
    10. Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
    11. Bistline, John E., 2014. "Energy technology expert elicitations: An application to natural gas turbine efficiencies," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 177-187.
    12. Catenacci, Michela & Verdolini, Elena & Bosetti, Valentina & Fiorese, Giulia, 2013. "Going electric: Expert survey on the future of battery technologies for electric vehicles," Energy Policy, Elsevier, vol. 61(C), pages 403-413.
    13. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
    14. Baker, Erin & Bosetti, Valentina & Salo, Ahti, 2016. "Finding Common Ground when Experts Disagree: Belief Dominance over Portfolios of Alternatives," MITP: Mitigation, Innovation and Transformation Pathways 243147, Fondazione Eni Enrico Mattei (FEEM).
    15. Baker, Erin & Bosetti, Valentina & Anadon, Laura Diaz & Henrion, Max & Aleluia Reis, Lara, 2015. "Future costs of key low-carbon energy technologies: Harmonization and aggregation of energy technology expert elicitation data," Energy Policy, Elsevier, vol. 80(C), pages 219-232.
    16. Matteson, Schuyler & Williams, Eric, 2015. "Residual learning rates in lead-acid batteries: Effects on emerging technologies," Energy Policy, Elsevier, vol. 85(C), pages 71-79.
    17. Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2015. "Bending the learning curve," Energy Economics, Elsevier, vol. 52(S1), pages 86-99.
    18. Enrica De Cian & Valentina Bosetti & Alessandra Sgobbi & Massimo Tavoni, 2009. "The 2008 WITCH Model: New Model Features and Baseline," Working Papers 2009.85, Fondazione Eni Enrico Mattei.
    19. Biondi, Tommaso & Moretto, Michele, 2015. "Solar Grid Parity dynamics in Italy: A real option approach," Energy, Elsevier, vol. 80(C), pages 293-302.
    20. Pettersson, Fredrik, 2007. "Carbon pricing and the diffusion of renewable power generation in Eastern Europe: A linear programming approach," Energy Policy, Elsevier, vol. 35(4), pages 2412-2425, April.

    More about this item

    Keywords

    Resource /Energy Economics and Policy;

    JEL classification:

    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:feemer:196997. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.