IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v151y2021ics0301421521000781.html
   My bibliography  Save this article

The impact of feed-in tariff degression on R&D investment in renewable energy: The case of the solar PV industry

Author

Listed:
  • Ma, Rufei
  • Cai, Huan
  • Ji, Qiang
  • Zhai, Pengxiang

Abstract

Feed-in tariff (FIT) is a broadly used policy instrument around the world, in which the payment level is always designed to decline gradually in order to track and encourage technological improvement in renewable energy. However, the potential adverse effects of tariff degression on renewable energy research and development (R&D) investment have not been sufficiently addressed. In this paper, we explore the impact of FIT payment degression on renewable energy R&D investment and analyze the efficient FIT payment structure for R&D investment. We form a modeling framework that captures the dynamics of FIT payment levels and the inventor's strategic reactions to tariff changes. In this framework, we model the inventor's optimal R&D investment decisions based on the canonical real option approach and simulate the impact of FIT payment degression on R&D investment and the efficient FIT payment structure under different R&D characteristics using the case of the solar photovoltaic (PV) industry. Our results emphasize the adverse effect of tariff degression on the commercial value of new renewable technology and hence the inventor's incentive in R&D investment, especially when facing more technical uncertainty and financial constraints. Our model could help policymakers to design an efficient FIT payment structure through which the cost of the FIT program is restricted to a minimum level but without influencing the inventor's R&D investment decisions.

Suggested Citation

  • Ma, Rufei & Cai, Huan & Ji, Qiang & Zhai, Pengxiang, 2021. "The impact of feed-in tariff degression on R&D investment in renewable energy: The case of the solar PV industry," Energy Policy, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:enepol:v:151:y:2021:i:c:s0301421521000781
    DOI: 10.1016/j.enpol.2021.112209
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521000781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hyytinen, Ari & Toivanen, Otto, 2005. "Do financial constraints hold back innovation and growth?: Evidence on the role of public policy," Research Policy, Elsevier, vol. 34(9), pages 1385-1403, November.
    2. Gao, Xue & Rai, Varun, 2019. "Local demand-pull policy and energy innovation: Evidence from the solar photovoltaic market in China," Energy Policy, Elsevier, vol. 128(C), pages 364-376.
    3. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    4. Frondel, Manuel & Ritter, Nolan & Schmidt, Christoph M. & Vance, Colin, 2010. "Economic impacts from the promotion of renewable energy technologies: The German experience," Energy Policy, Elsevier, vol. 38(8), pages 4048-4056, August.
    5. Pindyck, Robert S., 1993. "Investments of uncertain cost," Journal of Financial Economics, Elsevier, vol. 34(1), pages 53-76, August.
    6. Verdolini, Elena & Anadon, Laura Diaz & Lu, Jiaqi & Nemet, Gregory F., 2015. "The effects of expert selection, elicitation design, and R&D assumptions on experts' estimates of the future costs of photovoltaics," Energy Policy, Elsevier, vol. 80(C), pages 233-243.
    7. Detert, Neal & Kotani, Koji, 2013. "Real options approach to renewable energy investments in Mongolia," Energy Policy, Elsevier, vol. 56(C), pages 136-150.
    8. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    9. Nick Johnstone & Ivan Hačič & Margarita Kalamova, 2010. "Environmental Policy Characteristics and Technological Innovation," Economia politica, Società editrice il Mulino, issue 2, pages 277-302.
    10. Moner-Girona, M. & Ghanadan, R. & Solano-Peralta, M. & Kougias, I. & Bódis, K. & Huld, T. & Szabó, S., 2016. "Adaptation of Feed-in Tariff for remote mini-grids: Tanzania as an illustrative case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 306-318.
    11. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Liu, G.Q., 2016. "Optimal feed-in tariff for solar photovoltaic power generation in China: A real options analysis," Energy Policy, Elsevier, vol. 97(C), pages 181-192.
    12. Dinica, Valentina, 2006. "Support systems for the diffusion of renewable energy technologies--an investor perspective," Energy Policy, Elsevier, vol. 34(4), pages 461-480, March.
    13. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    14. Tian, Lixin & Pan, Jianglai & Du, Ruijin & Li, Wenchao & Zhen, Zaili & Qibing, Gao, 2017. "The valuation of photovoltaic power generation under carbon market linkage based on real options," Applied Energy, Elsevier, vol. 201(C), pages 354-362.
    15. Eduardo S. Schwartz, 2004. "Patents and R&D as Real Options," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 33(1), pages 23-54, February.
    16. Bronwyn H. Hall & Nathan Rosenberg (ed.), 2010. "Handbook of the Economics of Innovation," Handbook of the Economics of Innovation, Elsevier, edition 1, volume 1, number 1.
    17. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    18. Couture, Toby & Gagnon, Yves, 2010. "An analysis of feed-in tariff remuneration models: Implications for renewable energy investment," Energy Policy, Elsevier, vol. 38(2), pages 955-965, February.
    19. Ding, Hao & Zhou, Dequn & Zhou, P., 2020. "Optimal policy supports for renewable energy technology development: A dynamic programming model," Energy Economics, Elsevier, vol. 92(C).
    20. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    21. Yao, Xing & Fan, Ying & Zhu, Lei & Zhang, Xian, 2020. "Optimization of dynamic incentive for the deployment of carbon dioxide removal technology: A nonlinear dynamic approach combined with real options," Energy Economics, Elsevier, vol. 86(C).
    22. Zheng, Cheng & Kammen, Daniel M., 2014. "An innovation-focused roadmap for a sustainable global photovoltaic industry," Energy Policy, Elsevier, vol. 67(C), pages 159-169.
    23. Bhattacharya, Utpal & Hsu, Po-Hsuan & Tian, Xuan & Xu, Yan, 2017. "What Affects Innovation More: Policy or Policy Uncertainty?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(5), pages 1869-1901, October.
    24. Zhang, M.M. & Zhou, P. & Zhou, D.Q., 2016. "A real options model for renewable energy investment with application to solar photovoltaic power generation in China," Energy Economics, Elsevier, vol. 59(C), pages 213-226.
    25. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    26. Böhringer, Christoph & Cuntz, Alexander & Harhoff, Dietmar & Asane-Otoo, Emmanuel, 2017. "The impact of the German feed-in tariff scheme on innovation: Evidence based on patent filings in renewable energy technologies," Energy Economics, Elsevier, vol. 67(C), pages 545-553.
    27. Veugelers, Reinhilde, 2012. "Which policy instruments to induce clean innovating?," Research Policy, Elsevier, vol. 41(10), pages 1770-1778.
    28. Ding, H. & Zhou, D.Q. & Liu, G.Q. & Zhou, P., 2020. "Cost reduction or electricity penetration: Government R&D-induced PV development and future policy schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    29. Saed Alizamir & Francis de Véricourt & Peng Sun, 2016. "Efficient Feed-In-Tariff Policies for Renewable Energy Technologies," Operations Research, INFORMS, vol. 64(1), pages 52-66, February.
    30. Nemet, Gregory F., 2009. "Demand-pull, technology-push, and government-led incentives for non-incremental technical change," Research Policy, Elsevier, vol. 38(5), pages 700-709, June.
    31. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    32. Wang, Xiaozhen & Zou, Honghui, 2018. "Study on the effect of wind power industry policy types on the innovation performance of different ownership enterprises: Evidence from China," Energy Policy, Elsevier, vol. 122(C), pages 241-252.
    33. Lin, Boqiang & Chen, Yufang, 2019. "Impacts of policies on innovation in wind power technologies in China," Applied Energy, Elsevier, vol. 247(C), pages 682-691.
    34. Oliviero Carboni, 2011. "R&D subsidies and private R&D expenditures: evidence from Italian manufacturing data," International Review of Applied Economics, Taylor & Francis Journals, vol. 25(4), pages 419-439.
    35. Boomsma, Trine Krogh & Meade, Nigel & Fleten, Stein-Erik, 2012. "Renewable energy investments under different support schemes: A real options approach," European Journal of Operational Research, Elsevier, vol. 220(1), pages 225-237.
    36. Eduardo S. Schwartz & Carlos Zozaya-Gorostiza, 2003. "Investment Under Uncertainty in Information Technology: Acquisition and Development Projects," Management Science, INFORMS, vol. 49(1), pages 57-70, January.
    37. Sendstad, Lars Hegnes & Chronopoulos, Michail, 2020. "Sequential investment in renewable energy technologies under policy uncertainty," Energy Policy, Elsevier, vol. 137(C).
    38. Nick Johnstone & Ivan Haščič & Margarita Kalamova, 2010. "Environmental Policy Design Characteristics and Technological Innovation: Evidence from Patent Data," OECD Environment Working Papers 16, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bongsuk Sung & Woo-Yong Song, 2021. "Are Political Factors More Relevant Than Economic Factors in Firm-Level Renewable Energy Technology Export? Evidence from Path Analysis," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    2. Lin, Boqiang & Xie, Yongjing, 2023. "Positive or negative? R&D subsidies and green technology innovation: Evidence from China's renewable energy industry," Renewable Energy, Elsevier, vol. 213(C), pages 148-156.
    3. Wu, Jiaqian & Chen, Yu & Yu, Lean & Li, Guohao & Li, Jingjing, 2023. "Has the evolution of renewable energy policies facilitated the construction of a new power system for China? A system dynamics analysis," Energy Policy, Elsevier, vol. 183(C).
    4. Wang, Xue & Fan, Li-Wei & Zhang, Hongyan, 2023. "Policies for enhancing patent quality: Evidence from renewable energy technology in China," Energy Policy, Elsevier, vol. 180(C).
    5. Karlson Hargroves & Benjamin James & Joshua Lane & Peter Newman, 2023. "The Role of Distributed Energy Resources and Associated Business Models in the Decentralised Energy Transition: A Review," Energies, MDPI, vol. 16(10), pages 1-15, May.
    6. Xinxin Wang & Zeshui Xu & Yong Qin & Marinko Skare, 2023. "The global impact of financial development on renewable energy in a panel structural vector autoregression analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1364-1383, June.
    7. Dina Azhgaliyeva & Ranjeeta Mishra, 2022. "Feed‐in tariffs for financing renewable energy in Southeast Asia," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
    8. Eslami, Hossein & Krishnan, Trichy, 2023. "New sustainable product adoption: The role of economic and social factors," Energy Policy, Elsevier, vol. 183(C).
    9. Bangjun, Wang & Feng, Zhaolei & Feng, Ji & Yu, Pan & Cui, Linyu, 2022. "Decision making on investments in photovoltaic power generation projects based on renewable portfolio standard: Perspective of real option," Renewable Energy, Elsevier, vol. 189(C), pages 1033-1045.
    10. Hu, Xing & Guo, Yingying & Zheng, Yali & Liu, Lan-cui & Yu, Shiwei, 2022. "Which types of policies better promote the development of renewable energy? Evidence from China's provincial data," Renewable Energy, Elsevier, vol. 198(C), pages 1373-1382.
    11. Shafiullah, Muhammad & Miah, Mohammad Dulal & Alam, Md Samsul & Atif, Muhammad, 2021. "Does economic policy uncertainty affect renewable energy consumption?," Renewable Energy, Elsevier, vol. 179(C), pages 1500-1521.
    12. Mukhtarov, Shahriyar & Yüksel, Serhat & Dinçer, Hasan, 2022. "The impact of financial development on renewable energy consumption: Evidence from Turkey," Renewable Energy, Elsevier, vol. 187(C), pages 169-176.
    13. Àlex Alonso-Travesset & Diederik Coppitters & Helena Martín & Jordi de la Hoz, 2023. "Economic and Regulatory Uncertainty in Renewable Energy System Design: A Review," Energies, MDPI, vol. 16(2), pages 1-30, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Che, Xiao-Jing & Zhou, P. & Wang, M., 2022. "The policy effect on photovoltaic technology innovation with regional heterogeneity in China," Energy Economics, Elsevier, vol. 115(C).
    2. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    3. Nuñez-Jimenez, Alejandro & Knoeri, Christof & Hoppmann, Joern & Hoffmann, Volker H., 2022. "Beyond innovation and deployment: Modeling the impact of technology-push and demand-pull policies in Germany's solar policy mix," Research Policy, Elsevier, vol. 51(10).
    4. Graf, Holger & Kalthaus, Martin, 2018. "International research networks: Determinants of country embeddedness," Research Policy, Elsevier, vol. 47(7), pages 1198-1214.
    5. Zhao, Ge & Zhou, P. & Wen, Wen, 2021. "Feed-in tariffs, knowledge stocks and renewable energy technology innovation: The role of local government intervention," Energy Policy, Elsevier, vol. 156(C).
    6. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2023. "Green technologies, interdependencies, and policy," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    7. Grafström, Jonas & Poudineh, Rahmat, 2023. "Invention and Diffusion in the Solar Power Sector," Ratio Working Papers 364, The Ratio Institute.
    8. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    9. Zhao, Ge & Zhou, P. & Wen, Wen, 2022. "What cause regional inequality of technology innovation in renewable energy? Evidence from China," Applied Energy, Elsevier, vol. 310(C).
    10. He, Zhengxia & Cao, Changshuai & Kuai, Leyi & Zhou, Yanqing & Wang, Jianming, 2022. "Impact of policies on wind power innovation at different income levels: Regional differences in China based on dynamic panel estimation," Technology in Society, Elsevier, vol. 71(C).
    11. Samant, Shantala & Thakur-Wernz, Pooja & Hatfield, Donald E., 2020. "Does the focus of renewable energy policy impact the nature of innovation? Evidence from emerging economies," Energy Policy, Elsevier, vol. 137(C).
    12. Böhringer, Christoph & Cuntz, Alexander & Harhoff, Dietmar & Asane-Otoo, Emmanuel, 2017. "The impact of the German feed-in tariff scheme on innovation: Evidence based on patent filings in renewable energy technologies," Energy Economics, Elsevier, vol. 67(C), pages 545-553.
    13. Tang, Tian, 2018. "Explaining technological change in the US wind industry: Energy policies, technological learning, and collaboration," Energy Policy, Elsevier, vol. 120(C), pages 197-212.
    14. Li, Kai & Yan, Yaxue & Zhang, Xiaoling, 2021. "Carbon-abatement policies, investment preferences, and directed technological change: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    15. Cantner, Uwe & Graf, Holger & Herrmann, Johannes & Kalthaus, Martin, 2016. "Inventor networks in renewable energies: The influence of the policy mix in Germany," Research Policy, Elsevier, vol. 45(6), pages 1165-1184.
    16. Perruchas, François & Consoli, Davide & Barbieri, Nicolò, 2020. "Specialisation, diversification and the ladder of green technology development," Research Policy, Elsevier, vol. 49(3).
    17. Sam Aflaki & Syed Abul Basher & Andrea Masini, 2015. "Does Economic Growth Matter? Technology-Push, Demand-Pull and Endogenous Drivers of Innovation in the Renewable Energy Industry," Working Papers hal-02011423, HAL.
    18. David Popp, 2019. "Environmental Policy and Innovation: A Decade of Research," NBER Working Papers 25631, National Bureau of Economic Research, Inc.
    19. Che, Xiao-Jing & Zhou, P. & Chai, Kah-Hin, 2022. "Regional policy effect on photovoltaic (PV) technology innovation: Findings from 260 cities in China," Energy Policy, Elsevier, vol. 162(C).
    20. Popp, David, 2017. "From science to technology: The value of knowledge from different energy research institutions," Research Policy, Elsevier, vol. 46(9), pages 1580-1594.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:151:y:2021:i:c:s0301421521000781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.