IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v247y2019icp682-691.html
   My bibliography  Save this article

Impacts of policies on innovation in wind power technologies in China

Author

Listed:
  • Lin, Boqiang
  • Chen, Yufang

Abstract

The international community generally agrees that renewable energy, such as wind power, is conducive for achieving CO2 mitigation, environmental protection, energy savings, and energy security. The innovation in wind power technologies is vital to achieving a transformation of energy structure. The study sought to investigate the effects of policies (feed-in tariffs and research and development spending), their interaction, wind power deployment and electricity prices on wind power technology innovation at the provincial level in China, based on negative binomial fixed effect regression model and provincial panel data from 2006 to 2016. The following conclusions are drawn from the findings: (1) demand-pull policies through feed-in tariff policy promote innovation in wind power technologies; (2) higher feed-in tariffs of wind power induce greater stock of patents in wind technologies; (3) technology-push policies through research and development spending support wind power technological innovation; (4) only research and development funding investment in industrial enterprises under the implementation of feed-in tariff policy can stimulate greater patent stock due to the fact that the wind power industry enterprises are gainers for feed-in tariff policy, indicating that there is an interaction effect; (5) improving the wind power deployment drives wind power technology patents; (6) increasing electricity prices will incentivize innovation of wind power manufacturers in order to reduce cost and obtain more profit.

Suggested Citation

  • Lin, Boqiang & Chen, Yufang, 2019. "Impacts of policies on innovation in wind power technologies in China," Applied Energy, Elsevier, vol. 247(C), pages 682-691.
  • Handle: RePEc:eee:appene:v:247:y:2019:i:c:p:682-691
    DOI: 10.1016/j.apenergy.2019.04.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919306804
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.04.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Felix Groba & Jing Cao, 2015. "Chinese Renewable Energy Technology Exports: The Role of Policy, Innovation and Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(2), pages 243-283, February.
    2. Cheng, Quan & Yi, Hongtao, 2017. "Complementarity and substitutability: A review of state level renewable energy policy instrument interactions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 683-691.
    3. Lin, Boqiang & Chen, Yufang, 2019. "Does electricity price matter for innovation in renewable energy technologies in China?," Energy Economics, Elsevier, vol. 78(C), pages 259-266.
    4. Yao, Xilong & Liu, Yang & Qu, Shiyou, 2015. "When will wind energy achieve grid parity in China? – Connecting technological learning and climate finance," Applied Energy, Elsevier, vol. 160(C), pages 697-704.
    5. Fischer, Carolyn, 2008. "Emissions pricing, spillovers, and public investment in environmentally friendly technologies," Energy Economics, Elsevier, vol. 30(2), pages 487-502, March.
    6. Nick Johnstone & Ivan Haščič & Julie Poirier & Marion Hemar & Christian Michel, 2012. "Environmental policy stringency and technological innovation: evidence from survey data and patent counts," Applied Economics, Taylor & Francis Journals, vol. 44(17), pages 2157-2170, June.
    7. Antoine Dechezleprêtre & Matthieu Glachant, 2014. "Does Foreign Environmental Policy Influence Domestic Innovation? Evidence from the Wind Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 391-413, July.
    8. Horbach, Jens & Rammer, Christian & Rennings, Klaus, 2012. "Determinants of eco-innovations by type of environmental impact — The role of regulatory push/pull, technology push and market pull," Ecological Economics, Elsevier, vol. 78(C), pages 112-122.
    9. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    10. repec:fth:harver:1473 is not listed on IDEAS
    11. Rong, Zhao & Wu, Xiaokai & Boeing, Philipp, 2017. "The effect of institutional ownership on firm innovation: Evidence from Chinese listed firms," Research Policy, Elsevier, vol. 46(9), pages 1533-1551.
    12. Wang, Zhaohua & Yang, Zhongmin & Zhang, Yixiang & Yin, Jianhua, 2012. "Energy technology patents–CO2 emissions nexus: An empirical analysis from China," Energy Policy, Elsevier, vol. 42(C), pages 248-260.
    13. Lam, Long T. & Branstetter, Lee & Azevedo, Inês M.L., 2017. "China's wind industry: Leading in deployment, lagging in innovation," Energy Policy, Elsevier, vol. 106(C), pages 588-599.
    14. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    15. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    16. Ek, Kristina & Söderholm, Patrik, 2010. "Technology learning in the presence of public R&D: The case of European wind power," Ecological Economics, Elsevier, vol. 69(12), pages 2356-2362, October.
    17. Boqiang Lin & Yufang Chen, 2018. "Carbon Price in China: A CO2 Abatement Cost of Wind Power Perspective," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(7), pages 1653-1671, May.
    18. Böhringer, Christoph & Cuntz, Alexander & Harhoff, Dietmar & Asane-Otoo, Emmanuel, 2017. "The impact of the German feed-in tariff scheme on innovation: Evidence based on patent filings in renewable energy technologies," Energy Economics, Elsevier, vol. 67(C), pages 545-553.
    19. Schleich, Joachim & Walz, Rainer & Ragwitz, Mario, 2017. "Effects of policies on patenting in wind-power technologies," Energy Policy, Elsevier, vol. 108(C), pages 684-695.
    20. Liu, Yuanxin & Ren, Lingzhi & Li, Yanbin & Zhao, Xin-gang, 2015. "The industrial performance of wind power industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 644-655.
    21. Lin, Boqiang & Chen, Yufang & Zhang, Guoliang, 2017. "Technological progress and rebound effect in China's nonferrous metals industry: An empirical study," Energy Policy, Elsevier, vol. 109(C), pages 520-529.
    22. Nicolli, Francesco & Vona, Francesco, 2016. "Heterogeneous policies, heterogeneous technologies: The case of renewable energy," Energy Economics, Elsevier, vol. 56(C), pages 190-204.
    23. Lach, Saul, 1995. "Patents and productivity growth at the industry level: A first look," Economics Letters, Elsevier, vol. 49(1), pages 101-108, July.
    24. Blundell, Richard & Griffith, Rachel & Van Reenen, John, 1995. "Dynamic Count Data Models of Technological Innovation," Economic Journal, Royal Economic Society, vol. 105(429), pages 333-344, March.
    25. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    26. Xia, Fang & Song, Feng, 2017. "The uneven development of wind power in China: Determinants and the role of supporting policies," Energy Economics, Elsevier, vol. 67(C), pages 278-286.
    27. Song, Malin & Wang, Jianlin, 2018. "Environmental efficiency evaluation of thermal power generation in China based on a slack-based endogenous directional distance function model," Energy, Elsevier, vol. 161(C), pages 325-336.
    28. Grafström, Jonas & Lindman, Åsa, 2017. "Invention, innovation and diffusion in the European wind power sector," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 179-191.
    29. Kyunam Kim & Eunnyeong Heo & Yeonbae Kim, 2017. "Dynamic Policy Impacts on a Technological-Change System of Renewable Energy: An Empirical Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(2), pages 205-236, February.
    30. del Río, Pablo & Bleda, Mercedes, 2012. "Comparing the innovation effects of support schemes for renewable electricity technologies: A function of innovation approach," Energy Policy, Elsevier, vol. 50(C), pages 272-282.
    31. Ouyang, Xiaoling & Lin, Boqiang, 2014. "Levelized cost of electricity (LCOE) of renewable energies and required subsidies in China," Energy Policy, Elsevier, vol. 70(C), pages 64-73.
    32. Lin, Boqiang & Xu, Bin, 2018. "How to promote the growth of new energy industry at different stages?," Energy Policy, Elsevier, vol. 118(C), pages 390-403.
    33. Dominique Finon & Philippe Menanteau, 2003. "The Static and Dynamic Efficiency of Instruments of Promotion of Renewables," Post-Print halshs-00001300, HAL.
    34. Li, Ke & Lin, Boqiang, 2016. "Impact of energy technology patents in China: Evidence from a panel cointegration and error correction model," Energy Policy, Elsevier, vol. 89(C), pages 214-223.
    35. Zhao, Zhen-Yu & Chang, Rui-Dong & Chen, Yu-Long, 2016. "What hinder the further development of wind power in China?—A socio-technical barrier study," Energy Policy, Elsevier, vol. 88(C), pages 465-476.
    36. Bento, Nuno & Fontes, Margarida, 2015. "The construction of a new technological innovation system in a follower country: Wind energy in Portugal," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 197-210.
    37. Ru, Peng & Zhi, Qiang & Zhang, Fang & Zhong, Xiaotian & Li, Jianqiang & Su, Jun, 2012. "Behind the development of technology: The transition of innovation modes in China’s wind turbine manufacturing industry," Energy Policy, Elsevier, vol. 43(C), pages 58-69.
    38. Wang, Qunwei & Hang, Ye & Sun, Licheng & Zhao, Zengyao, 2016. "Two-stage innovation efficiency of new energy enterprises in China: A non-radial DEA approach," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 254-261.
    39. Klagge, Britta & Liu, Zhigao & Campos Silva, Pedro, 2012. "Constructing China’s wind energy innovation system," Energy Policy, Elsevier, vol. 50(C), pages 370-382.
    40. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    41. Bergek, Anna & Berggren, Christian, 2014. "The impact of environmental policy instruments on innovation: A review of energy and automotive industry studies," Ecological Economics, Elsevier, vol. 106(C), pages 112-123.
    42. He, Gang & Kammen, Daniel M., 2014. "Where, when and how much wind is available? A provincial-scale wind resource assessment for China," Energy Policy, Elsevier, vol. 74(C), pages 116-122.
    43. Paul Lehmann & Patrik Söderholm, 2018. "Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 475-505, October.
    44. Lin, Boqiang & Li, Jianglong, 2015. "Analyzing cost of grid-connection of renewable energy development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1373-1382.
    45. Hu, Rui & Skea, Jim & Hannon, Matthew J., 2018. "Measuring the energy innovation process: An indicator framework and a case study of wind energy in China," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 227-244.
    46. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    47. Ling-Yun He & Li Liu, 2018. "Stand by or Follow? Responsibility Diffusion Effects and Green Credit," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(8), pages 1740-1760, June.
    48. Wang, Xiaozhen & Zou, Honghui, 2018. "Study on the effect of wind power industry policy types on the innovation performance of different ownership enterprises: Evidence from China," Energy Policy, Elsevier, vol. 122(C), pages 241-252.
    49. Popp, David & Hascic, Ivan & Medhi, Neelakshi, 2011. "Technology and the diffusion of renewable energy," Energy Economics, Elsevier, vol. 33(4), pages 648-662, July.
    50. Xu, Bin & Lin, Boqiang, 2018. "Assessing the development of China's new energy industry," Energy Economics, Elsevier, vol. 70(C), pages 116-131.
    51. Lindman, Åsa & Söderholm, Patrik, 2016. "Wind energy and green economy in Europe: Measuring policy-induced innovation using patent data," Applied Energy, Elsevier, vol. 179(C), pages 1351-1359.
    52. Söderholm, Patrik & Strömberg, Lars, 2003. "A utility-eye view of the CO2 compliance-decision process in the European power-sector," Applied Energy, Elsevier, vol. 75(3-4), pages 183-192, July.
    53. Liao, Zhongju, 2016. "The evolution of wind energy policies in China (1995–2014): An analysis based on policy instruments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 464-472.
    54. Guan, JianCheng & Yam, Richard C.M., 2015. "Effects of government financial incentives on firms’ innovation performance in China: Evidences from Beijing in the 1990s," Research Policy, Elsevier, vol. 44(1), pages 273-282.
    55. Costantini, Valeria & Crespi, Francesco & Martini, Chiara & Pennacchio, Luca, 2015. "Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector," Research Policy, Elsevier, vol. 44(3), pages 577-595.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & Chen, Yufang, 2019. "Does electricity price matter for innovation in renewable energy technologies in China?," Energy Economics, Elsevier, vol. 78(C), pages 259-266.
    2. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    3. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    4. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    5. He, Zhengxia & Cao, Changshuai & Kuai, Leyi & Zhou, Yanqing & Wang, Jianming, 2022. "Impact of policies on wind power innovation at different income levels: Regional differences in China based on dynamic panel estimation," Technology in Society, Elsevier, vol. 71(C).
    6. Lindman, Åsa & Söderholm, Patrik, 2016. "Wind energy and green economy in Europe: Measuring policy-induced innovation using patent data," Applied Energy, Elsevier, vol. 179(C), pages 1351-1359.
    7. Grafström, Jonas & Poudineh, Rahmat, 2023. "Invention and Diffusion in the Solar Power Sector," Ratio Working Papers 364, The Ratio Institute.
    8. Schleich, Joachim & Walz, Rainer & Ragwitz, Mario, 2017. "Effects of policies on patenting in wind-power technologies," Energy Policy, Elsevier, vol. 108(C), pages 684-695.
    9. Xin-gang, Zhao & Wei, Wang & Jieying, Wang, 2022. "The policy effects of demand-pull and technology-push on the diffusion of wind power: A scenario analysis based on system dynamics approach," Energy, Elsevier, vol. 261(PA).
    10. Che, Xiao-Jing & Zhou, P. & Wang, M., 2022. "The policy effect on photovoltaic technology innovation with regional heterogeneity in China," Energy Economics, Elsevier, vol. 115(C).
    11. Che, Xiao-Jing & Zhou, P. & Chai, Kah-Hin, 2022. "Regional policy effect on photovoltaic (PV) technology innovation: Findings from 260 cities in China," Energy Policy, Elsevier, vol. 162(C).
    12. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    13. Zhao, Ge & Zhou, P. & Wen, Wen, 2021. "Feed-in tariffs, knowledge stocks and renewable energy technology innovation: The role of local government intervention," Energy Policy, Elsevier, vol. 156(C).
    14. Valeria Costantini & Francesco Crespi & Alessandro Palma, 2015. "Characterizing the policy mix and its impact on eco-innovation in energy-efficient technologies," SEEDS Working Papers 1115, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2015.
    15. Garsous, Grégoire & Worack, Stephan, 2022. "Technological expertise as a driver of environmental technology diffusion through trade: Evidence from the wind turbine manufacturing industry," Energy Policy, Elsevier, vol. 162(C).
    16. Bai, Caiquan & Feng, Chen & Du, Kerui & Wang, Yuansheng & Gong, Yuan, 2020. "Understanding spatial-temporal evolution of renewable energy technology innovation in China: Evidence from convergence analysis," Energy Policy, Elsevier, vol. 143(C).
    17. Costantini, Valeria & Crespi, Francesco & Martini, Chiara & Pennacchio, Luca, 2015. "Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector," Research Policy, Elsevier, vol. 44(3), pages 577-595.
    18. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
    19. Pitelis, Alkis & Vasilakos, Nicholas & Chalvatzis, Konstantinos, 2020. "Fostering innovation in renewable energy technologies: Choice of policy instruments and effectiveness," Renewable Energy, Elsevier, vol. 151(C), pages 1163-1172.
    20. Grafström, Jonas, 2021. "Ratio Working Paper No. 351: Knowledge Spillovers in the Solar energy sector," Ratio Working Papers 351, The Ratio Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:247:y:2019:i:c:p:682-691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.