IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v89y2016icp214-223.html
   My bibliography  Save this article

Impact of energy technology patents in China: Evidence from a panel cointegration and error correction model

Author

Listed:
  • Li, Ke
  • Lin, Boqiang

Abstract

Enhancing energy technology innovation performance, which is widely measured by energy technology patents through energy technology research and development (R&D) activities, is a fundamental way to implement energy conservation and emission abatement. This study analyzes the effects of R&D investment activities, economic growth, and energy price on energy technology patents in 30 provinces of China over the period 1999–2013. Several unit root tests indicate that all the above variables are generated by panel unit root processes, and a panel cointegration model is confirmed among the variables. In order to ensure the consistency of the estimators, the Fully-Modified OLS (FMOLS) method is adopted, and the results indicate that R&D investment activities and economic growth have positive effects on energy technology patents while energy price has a negative effect. However, the panel error correction models indicate that the cointegration relationship helps to promote economic growth, but it reduces R&D investment and energy price in the short term. Therefore, market-oriented measures including financial support and technical transformation policies for the development of low-carbon energy technologies, an effective energy price mechanism, especially the targeted fossil-fuel subsidies and their die away mode are vital in promoting China's energy technology innovation.

Suggested Citation

  • Li, Ke & Lin, Boqiang, 2016. "Impact of energy technology patents in China: Evidence from a panel cointegration and error correction model," Energy Policy, Elsevier, vol. 89(C), pages 214-223.
  • Handle: RePEc:eee:enepol:v:89:y:2016:i:c:p:214-223
    DOI: 10.1016/j.enpol.2015.11.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515302135
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    2. Bointner, Raphael, 2014. "Innovation in the energy sector: Lessons learnt from R&D expenditures and patents in selected IEA countries," Energy Policy, Elsevier, vol. 73(C), pages 733-747.
    3. Ke, Jing & Price, Lynn & Ohshita, Stephanie & Fridley, David & Khanna, Nina Zheng & Zhou, Nan & Levine, Mark, 2012. "China's industrial energy consumption trends and impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects," Energy Policy, Elsevier, vol. 50(C), pages 562-569.
    4. Vanessa Oltra & Rene Kemp & Frans P. De Vries, 2010. "Patents as a measure for eco-innovation," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 13(2), pages 130-148.
    5. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," Review of Economic Studies, Oxford University Press, vol. 57(1), pages 99-125.
    6. A. Bhargava & L. Franzini & W. Narendranathan, 2006. "Serial Correlation and the Fixed Effects Model," World Scientific Book Chapters,in: Econometrics, Statistics And Computational Approaches In Food And Health Sciences, chapter 4, pages 61-77 World Scientific Publishing Co. Pte. Ltd..
    7. Pedroni, Peter, 2004. "Panel Cointegration: Asymptotic And Finite Sample Properties Of Pooled Time Series Tests With An Application To The Ppp Hypothesis," Econometric Theory, Cambridge University Press, vol. 20(03), pages 597-625, June.
    8. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    9. Chang, Yoosoon, 2004. "Bootstrap unit root tests in panels with cross-sectional dependency," Journal of Econometrics, Elsevier, vol. 120(2), pages 263-293, June.
    10. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    11. Chang, Yoosoon, 2002. "Nonlinear IV unit root tests in panels with cross-sectional dependency," Journal of Econometrics, Elsevier, vol. 110(2), pages 261-292, October.
    12. Song, Feng & Zheng, Xinye, 2012. "What drives the change in China's energy intensity: Combining decomposition analysis and econometric analysis at the provincial level," Energy Policy, Elsevier, vol. 51(C), pages 445-453.
    13. Zhao, Xiaofan & Li, Huimin & Wu, Liang & Qi, Ye, 2014. "Implementation of energy-saving policies in China: How local governments assisted industrial enterprises in achieving energy-saving targets," Energy Policy, Elsevier, vol. 66(C), pages 170-184.
    14. Margolis, Robert M. & Kammen, Daniel M., 1999. "Evidence of under-investment in energy R&D in the United States and the impact of Federal policy," Energy Policy, Elsevier, vol. 27(10), pages 575-584, October.
    15. Wang, Zhaohua & Yang, Zhongmin & Zhang, Yixiang & Yin, Jianhua, 2012. "Energy technology patents–CO2 emissions nexus: An empirical analysis from China," Energy Policy, Elsevier, vol. 42(C), pages 248-260.
    16. Popp, David & Newell, Richard, 2012. "Where does energy R&D come from? Examining crowding out from energy R&D," Energy Economics, Elsevier, vol. 34(4), pages 980-991.
    17. Stock, James H & Watson, Mark W, 1993. "A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems," Econometrica, Econometric Society, vol. 61(4), pages 783-820, July.
    18. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
    19. Lin, Boqiang & Liu, Xia, 2012. "Dilemma between economic development and energy conservation: Energy rebound effect in China," Energy, Elsevier, vol. 45(1), pages 867-873.
    20. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    21. Pakes, Ariel, 1985. "On Patents, R&D, and the Stock Market Rate of Return," Journal of Political Economy, University of Chicago Press, vol. 93(2), pages 390-409, April.
    22. Lee, Woo Jin & Sohn, So Young, 2014. "Patent analysis to identify shale gas development in China and the United States," Energy Policy, Elsevier, vol. 74(C), pages 111-115.
    23. Maddala, G S & Wu, Shaowen, 1999. " A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 631-652, Special I.
    24. Suzanne McCoskey & Chihwa Kao, 1998. "A residual-based test of the null of cointegration in panel data," Econometric Reviews, Taylor & Francis Journals, vol. 17(1), pages 57-84.
    25. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
    26. Choi, In, 2001. "Unit root tests for panel data," Journal of International Money and Finance, Elsevier, vol. 20(2), pages 249-272, April.
    27. Harris, Richard D. F. & Tzavalis, Elias, 1999. "Inference for unit roots in dynamic panels where the time dimension is fixed," Journal of Econometrics, Elsevier, vol. 91(2), pages 201-226, August.
    28. World Bank, 2014. "Open Data for Economic Growth," World Bank Other Operational Studies 19997, The World Bank.
    29. Jiang, Lei & Folmer, Henk & Ji, Minhe, 2014. "The drivers of energy intensity in China: A spatial panel data approach," China Economic Review, Elsevier, vol. 31(C), pages 351-360.
    30. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    31. Zhaohua Wang & Zhongmin Yang & Yixiang Zhang, 2012. "Relationships between energy technology patents and CO2 emissions in China: An empirical study," CEEP-BIT Working Papers 34, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    32. Li, Ke & Lin, Boqiang, 2015. "How does administrative pricing affect energy consumption and CO2 emissions in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 952-962.
    33. World Bank, 2014. "Open Data for Economic Growth in Russia," World Bank Other Operational Studies 21320, The World Bank.
    34. Popp, David & Hascic, Ivan & Medhi, Neelakshi, 2011. "Technology and the diffusion of renewable energy," Energy Economics, Elsevier, vol. 33(4), pages 648-662, July.
    35. Saikkonen, Pentti, 1991. "Asymptotically Efficient Estimation of Cointegration Regressions," Econometric Theory, Cambridge University Press, vol. 7(01), pages 1-21, March.
    36. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    37. Li, Ke & Lin, Boqiang, 2014. "The nonlinear impacts of industrial structure on China's energy intensity," Energy, Elsevier, vol. 69(C), pages 258-265.
    38. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    39. Guan, JianCheng & Yam, Richard C.M., 2015. "Effects of government financial incentives on firms’ innovation performance in China: Evidences from Beijing in the 1990s," Research Policy, Elsevier, vol. 44(1), pages 273-282.
    40. Wong, Chan-Yuan & Fatimah Mohamad, Zeeda & Keng, Zi-Xiang & Ariff Azizan, Suzana, 2014. "Examining the patterns of innovation in low carbon energy science and technology: Publications and patents of Asian emerging economies," Energy Policy, Elsevier, vol. 73(C), pages 789-802.
    41. Lee, Kyungpyo & Lee, Sungjoo, 2013. "Patterns of technological innovation and evolution in the energy sector: A patent-based approach," Energy Policy, Elsevier, vol. 59(C), pages 415-432.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Álvarez-Herránz, Agustín & Balsalobre, Daniel & Cantos, José María & Shahbaz, Muhammad, 2017. "Energy Innovations-GHG Emissions Nexus: Fresh Empirical Evidence from OECD Countries," Energy Policy, Elsevier, vol. 101(C), pages 90-100.
    2. repec:eee:eneeco:v:68:y:2017:i:c:p:340-358 is not listed on IDEAS
    3. Xu, Bin & Lin, Boqiang, 2017. "Factors affecting CO2 emissions in China’s agriculture sector: Evidence from geographically weighted regression model," Energy Policy, Elsevier, vol. 104(C), pages 404-414.
    4. repec:eee:energy:v:145:y:2018:i:c:p:388-399 is not listed on IDEAS
    5. Ameer, Ayesha & Munir, Kashif, 2016. "Effect of Economic Growth, Trade Openness, Urbanization, and Technology on Environment of Selected Asian Countries," MPRA Paper 74571, University Library of Munich, Germany.
    6. Xu, Bin & Lin, Boqiang, 2016. "A quantile regression analysis of China's provincial CO2 emissions: Where does the difference lie?," Energy Policy, Elsevier, vol. 98(C), pages 328-342.
    7. repec:eee:jrpoli:v:54:y:2017:i:c:p:25-42 is not listed on IDEAS
    8. repec:eee:eneeco:v:67:y:2017:i:c:p:49-59 is not listed on IDEAS
    9. repec:spr:nathaz:v:88:y:2017:i:2:d:10.1007_s11069-017-2915-2 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:89:y:2016:i:c:p:214-223. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.