IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v70y2018icp116-131.html
   My bibliography  Save this article

Assessing the development of China's new energy industry

Author

Listed:
  • Xu, Bin
  • Lin, Boqiang

Abstract

As the world's largest carbon dioxide (CO2) emitter, China is facing increasing international pressure to reduce emissions. Actively developing new energy has become a fundamental means to solve the dilemma between environmental pollution and energy consumption growth. Thus, more scholars have conducted a wide range of studies on the new energy industry. However, most of the existing studies use traditional linear models to investigate the relationships between new energy industry and its driving forces, ignoring the objective reality that there are many nonlinear relationships in economic variables. In order to overcome the shortcomings of existing research, this paper uses a data-driven nonparametric additive regression model to study the new energy industry. The results show that the nonlinear effect of agricultural development shows an inverted “U-shaped” pattern due to the changes in crop acreage at different stages of development. The nonlinear impact of foreign energy dependence also indicates an inverted “U–shaped” pattern. However, technological progress produces a positive “U–shaped” nonlinear impact on the new energy industry because of the difference in R&D funding and R&D personnel investments. Similarly, the impact of energy consumption structure also shows a positive “U–shaped” pattern, owing to the gradual decline in coal consumption. Therefore, the government should develop differentiated policies at different stages, in order to effectively promote the development of new energy industries.

Suggested Citation

  • Xu, Bin & Lin, Boqiang, 2018. "Assessing the development of China's new energy industry," Energy Economics, Elsevier, vol. 70(C), pages 116-131.
  • Handle: RePEc:eee:eneeco:v:70:y:2018:i:c:p:116-131
    DOI: 10.1016/j.eneco.2018.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988318300094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2018.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Kai & Pei, Ping & Zhang, Chao & Wu, Xin, 2017. "Exploring the price dynamics of CO2 emissions allowances in China's emissions trading scheme pilots," Energy Economics, Elsevier, vol. 67(C), pages 213-223.
    2. Herrerias, M.J. & Aller, Carlos & Ordóñez, Javier, 2017. "Residential energy consumption: A convergence analysis across Chinese regions," Energy Economics, Elsevier, vol. 62(C), pages 371-381.
    3. Narayan, Seema & Doytch, Nadia, 2017. "An investigation of renewable and non-renewable energy consumption and economic growth nexus using industrial and residential energy consumption," Energy Economics, Elsevier, vol. 68(C), pages 160-176.
    4. Jiashun Huang & Weiping Li & Xijie Huang & Lijia Guo, 2017. "Analysis of the Relative Sustainability of Land Devoted to Bioenergy: Comparing Land-Use Alternatives in China," Sustainability, MDPI, vol. 9(5), pages 1-13, May.
    5. Chandran Govindaraju, V.G.R. & Tang, Chor Foon, 2013. "The dynamic links between CO2 emissions, economic growth and coal consumption in China and India," Applied Energy, Elsevier, vol. 104(C), pages 310-318.
    6. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Ugolini, Andrea, 2017. "Wavelet-based test of co-movement and causality between oil and renewable energy stock prices," Energy Economics, Elsevier, vol. 61(C), pages 241-252.
    7. Pedroni, Peter, 2004. "Panel Cointegration: Asymptotic And Finite Sample Properties Of Pooled Time Series Tests With An Application To The Ppp Hypothesis," Econometric Theory, Cambridge University Press, vol. 20(3), pages 597-625, June.
    8. Kiyotada Hayashi & Hiroki Hondo & Yue Moriizumi, 2016. "Preference Construction Processes for Renewable Energies: Assessing the Influence of Sustainability Information and Decision Support Methods," Sustainability, MDPI, vol. 8(11), pages 1-14, November.
    9. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    10. Destek, Mehmet Akif & Aslan, Alper, 2017. "Renewable and non-renewable energy consumption and economic growth in emerging economies: Evidence from bootstrap panel causality," Renewable Energy, Elsevier, vol. 111(C), pages 757-763.
    11. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    12. Xu, Bin & Lin, Boqiang, 2016. "Reducing CO2 emissions in China's manufacturing industry: Evidence from nonparametric additive regression models," Energy, Elsevier, vol. 101(C), pages 161-173.
    13. Atalla, Tarek & Blazquez, Jorge & Hunt, Lester C. & Manzano, Baltasar, 2017. "Prices versus policy: An analysis of the drivers of the primary fossil fuel mix," Energy Policy, Elsevier, vol. 106(C), pages 536-546.
    14. Wang, Qiang & Li, Rongrong, 2017. "Decline in China's coal consumption: An evidence of peak coal or a temporary blip?," Energy Policy, Elsevier, vol. 108(C), pages 696-701.
    15. Granger, C. W. J., 1988. "Some recent development in a concept of causality," Journal of Econometrics, Elsevier, vol. 39(1-2), pages 199-211.
    16. Chiu, Yi-Bin, 2017. "Carbon dioxide, income and energy: Evidence from a non-linear model," Energy Economics, Elsevier, vol. 61(C), pages 279-288.
    17. Zeng, Shouzhen & Streimikiene, Dalia & Baležentis, Tomas, 2017. "Review of and comparative assessment of energy security in Baltic States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 185-192.
    18. Menegaki, Angeliki N., 2013. "Growth and renewable energy in Europe: Benchmarking with data envelopment analysis," Renewable Energy, Elsevier, vol. 60(C), pages 363-369.
    19. Yu, Feifei & Guo, Yue & Le-Nguyen, Khuong & Barnes, Stuart J. & Zhang, Weiting, 2016. "The impact of government subsidies and enterprises’ R&D investment: A panel data study from renewable energy in China," Energy Policy, Elsevier, vol. 89(C), pages 106-113.
    20. Ito, Katsuya, 2017. "CO2 emissions, renewable and non-renewable energy consumption, and economic growth: Evidence from panel data for developing countries," International Economics, Elsevier, vol. 151(C), pages 1-6.
    21. Rolz, Carlos & de León, Robert & Mendizábal de Montenegro, Ana Luisa & Porras, Vilma & Cifuentes, Rolando, 2017. "A multiple harvest cultivation strategy for ethanol production from sweet sorghum throughout the year in tropical ecosystems," Renewable Energy, Elsevier, vol. 106(C), pages 103-110.
    22. Kelebe, Haftu Etsay & Ayimut, Kiros Meles & Berhe, Gebresilasse Hailu & Hintsa, Kidane, 2017. "Determinants for adoption decision of small scale biogas technology by rural households in Tigray, Ethiopia," Energy Economics, Elsevier, vol. 66(C), pages 272-278.
    23. Rati Ram, 2016. "PPP GDP Per Capita for Countries of the World: A Comparison of the New ICP Results with World Bank Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 127(3), pages 1057-1066, July.
    24. Apergis, Nicholas & Payne, James E., 2014. "Renewable energy, output, CO2 emissions, and fossil fuel prices in Central America: Evidence from a nonlinear panel smooth transition vector error correction model," Energy Economics, Elsevier, vol. 42(C), pages 226-232.
    25. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    26. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    27. Jónsson, Tryggvi & Pinson, Pierre & Madsen, Henrik, 2010. "On the market impact of wind energy forecasts," Energy Economics, Elsevier, vol. 32(2), pages 313-320, March.
    28. Ritchie, Justin & Dowlatabadi, Hadi, 2017. "The 1000 GtC coal question: Are cases of vastly expanded future coal combustion still plausible?," Energy Economics, Elsevier, vol. 65(C), pages 16-31.
    29. Anindya Banerjee & Martin Wagner, 2009. "Panel Methods to Test for Unit Roots and Cointegration," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 13, pages 632-726, Palgrave Macmillan.
    30. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    31. Renn, Ortwin & Marshall, Jonathan Paul, 2016. "Coal, nuclear and renewable energy policies in Germany: From the 1950s to the “Energiewende”," Energy Policy, Elsevier, vol. 99(C), pages 224-232.
    32. Paramati, Sudharshan Reddy & Mo, Di & Gupta, Rakesh, 2017. "The effects of stock market growth and renewable energy use on CO2 emissions: Evidence from G20 countries," Energy Economics, Elsevier, vol. 66(C), pages 360-371.
    33. Shayegh, Soheil & Sanchez, Daniel L. & Caldeira, Ken, 2017. "Evaluating relative benefits of different types of R&D for clean energy technologies," Energy Policy, Elsevier, vol. 107(C), pages 532-538.
    34. Gaiotti, Eugenio, 2008. "Has globalisation changed the Phillips curve? Firm-level evidence on the effect of activity on prices," MPRA Paper 8389, University Library of Munich, Germany.
    35. Xu, Bin & Lin, Boqiang, 2017. "Assessing CO2 emissions in China's iron and steel industry: A nonparametric additive regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 325-337.
    36. Wei, Max & Patadia, Shana & Kammen, Daniel M., 2010. "Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US?," Energy Policy, Elsevier, vol. 38(2), pages 919-931, February.
    37. Best, Rohan, 2017. "Switching towards coal or renewable energy? The effects of financial capital on energy transitions," Energy Economics, Elsevier, vol. 63(C), pages 75-83.
    38. Josep Lluís Carrion-i-Silvestre & Tomás del Barrio-Castro & Enrique López-Bazo, 2005. "Breaking the panels: An application to the GDP per capita," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 159-175, July.
    39. Kumar, Anil & Kumar, Nitin & Baredar, Prashant & Shukla, Ashish, 2015. "A review on biomass energy resources, potential, conversion and policy in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 530-539.
    40. Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207.
    41. Katsuya Ito, 2017. "CO2 emissions, renewable and non-renewable energy consumption, and economic growth: Evidence from panel data for developing countries," International Economics, CEPII research center, issue 151, pages 1-6.
    42. Kyung‐So Im & Junsoo Lee & Margie Tieslau, 2005. "Panel LM Unit‐root Tests with Level Shifts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(3), pages 393-419, June.
    43. Xia, Fang & Song, Feng, 2017. "The uneven development of wind power in China: Determinants and the role of supporting policies," Energy Economics, Elsevier, vol. 67(C), pages 278-286.
    44. Geng, Jiang-Bo & Ji, Qiang & Fan, Ying, 2017. "The relationship between regional natural gas markets and crude oil markets from a multi-scale nonlinear Granger causality perspective," Energy Economics, Elsevier, vol. 67(C), pages 98-110.
    45. Joel Alejandro Rosado & Mar a Isabel Alvarado S nchez, 2017. "The Influence of Economic Growth and Electric Consumption on Pollution in South America Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 121-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Boqiang & Xu, Bin, 2018. "How to promote the growth of new energy industry at different stages?," Energy Policy, Elsevier, vol. 118(C), pages 390-403.
    2. Chen, Yu & Lin, Boqiang, 2021. "Understanding the green total factor energy efficiency gap between regional manufacturing—insight from infrastructure development," Energy, Elsevier, vol. 237(C).
    3. Liao, Nuo & He, Yong, 2018. "Exploring the effects of influencing factors on energy efficiency in industrial sector using cluster analysis and panel regression model," Energy, Elsevier, vol. 158(C), pages 782-795.
    4. Lin, Boqiang & Xu, Bin, 2019. "How to effectively stabilize China's commodity price fluctuations?," Energy Economics, Elsevier, vol. 84(C).
    5. Lin, Boqiang & Chen, Yufang, 2019. "Does electricity price matter for innovation in renewable energy technologies in China?," Energy Economics, Elsevier, vol. 78(C), pages 259-266.
    6. Bian, Yadong & Wang, Kejian & Wang, Julian & Yu, Yongsheng & Liu, Mingyue & Lv, Yajun, 2021. "Preparation and properties of capric acid: Stearic acid/hydrophobic expanded perlite-aerogel composite phase change materials," Renewable Energy, Elsevier, vol. 179(C), pages 1027-1035.
    7. Xiaowen Ding & Lin Liu & Guohe Huang & Ye Xu & Junhong Guo, 2019. "A Multi-Objective Optimization Model for a Non-Traditional Energy System in Beijing under Climate Change Conditions," Energies, MDPI, vol. 12(9), pages 1-21, May.
    8. Lin, Boqiang & Chen, Yufang, 2019. "Impacts of policies on innovation in wind power technologies in China," Applied Energy, Elsevier, vol. 247(C), pages 682-691.
    9. Xu, Renjing & Xu, Bin, 2022. "Exploring the effective way of reducing carbon intensity in the heavy industry using a semiparametric econometric approach," Energy, Elsevier, vol. 243(C).
    10. Bai, Caiquan & Feng, Chen & Du, Kerui & Wang, Yuansheng & Gong, Yuan, 2020. "Understanding spatial-temporal evolution of renewable energy technology innovation in China: Evidence from convergence analysis," Energy Policy, Elsevier, vol. 143(C).
    11. Best, Rohan & Trück, Stefan, 2020. "Capital and policy impacts on Australian small-scale solar installations," Energy Policy, Elsevier, vol. 136(C).
    12. Usman, Ahmed & Ozturk, Ilhan & Ullah, Sana & Hassan, Ali, 2021. "Does ICT have symmetric or asymmetric effects on CO2 emissions? Evidence from selected Asian economies," Technology in Society, Elsevier, vol. 67(C).
    13. Xu, Zhiwei & Li, Jiaqi & Hua, Xia & Ren, Pengyue, 2024. "Is the tone of the government-controlled media valuable for capital market? Evidence from China's new energy industry," Energy Policy, Elsevier, vol. 184(C).
    14. Yang, Guanglei & Zhang, Guoxing & Cao, Dongqin & Zha, Donglan & Gao, Xiulin & Su, Bin, 2024. "China's provincial-level sustainable energy transition requires accelerating renewable energy technological innovation," Energy, Elsevier, vol. 288(C).
    15. Juan Li & Keyin Liu & Zixin Yang & Yi Qu, 2023. "Evolution and Impacting Factors of Global Renewable Energy Products Trade Network: An Empirical Investigation Based on ERGM Model," Sustainability, MDPI, vol. 15(11), pages 1-27, May.
    16. Feng Dong & Yifei Hua & Bolin Yu, 2018. "Peak Carbon Emissions in China: Status, Key Factors and Countermeasures—A Literature Review," Sustainability, MDPI, vol. 10(8), pages 1-34, August.
    17. Alameer, Zakaria & Fathalla, Ahmed & Li, Kenli & Ye, Haiwang & Jianhua, Zhang, 2020. "Multistep-ahead forecasting of coal prices using a hybrid deep learning model," Resources Policy, Elsevier, vol. 65(C).
    18. Yangjun Ren & Xin Zhang & Hui Chen, 2022. "The Impact of New Energy Enterprises’ Digital Transformation on Their Total Factor Productivity: Empirical Evidence from China," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    19. Lin, Boqiang & Chen, Yu, 2020. "Will land transport infrastructure affect the energy and carbon dioxide emissions performance of China’s manufacturing industry?," Applied Energy, Elsevier, vol. 260(C).
    20. Wang, Kai-Hua & Su, Chi-Wei & Lobonţ, Oana-Ramona & Moldovan, Nicoleta-Claudia, 2020. "Chinese renewable energy industries’ boom and recession: Evidence from bubble detection procedure," Energy Policy, Elsevier, vol. 138(C).
    21. Li, Jinghua & Luo, Yichen & Wei, Shanyang, 2022. "Long-term electricity consumption forecasting method based on system dynamics under the carbon-neutral target," Energy, Elsevier, vol. 244(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    2. Charfeddine, Lanouar & Kahia, Montassar, 2019. "Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis," Renewable Energy, Elsevier, vol. 139(C), pages 198-213.
    3. Dong, Kangyin & Hochman, Gal & Zhang, Yaqing & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions," Energy Economics, Elsevier, vol. 75(C), pages 180-192.
    4. Muhammad Farhan Bashir & Benjiang MA & Muhammad Shahbaz & Zhilun Jiao, 2020. "The nexus between environmental tax and carbon emissions with the roles of environmental technology and financial development," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-20, November.
    5. Adedoyin, Festus Fatai & Alola, Andrew Adewale & Bekun, Festus Victor, 2021. "The alternative energy utilization and common regional trade outlook in EU-27: Evidence from common correlated effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Hamit-Haggar, Mahamat, 2012. "Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective," Energy Economics, Elsevier, vol. 34(1), pages 358-364.
    7. Qiao, Hui & Chen, Siyu & Dong, Xiucheng & Dong, Kangyin, 2019. "Has China's coal consumption actually reached its peak? National and regional analysis considering cross-sectional dependence and heterogeneity," Energy Economics, Elsevier, vol. 84(C).
    8. Shrestha, Anil & Mustafa, Andy Ali & Htike, Myo Myo & You, Vithyea & Kakinaka, Makoto, 2022. "Evolution of energy mix in emerging countries: Modern renewable energy, traditional renewable energy, and non-renewable energy," Renewable Energy, Elsevier, vol. 199(C), pages 419-432.
    9. Jan Polcyn & Liton Chandra Voumik & Mohammad Ridwan & Samrat Ray & Viktoriia Vovk, 2023. "Evaluating the Influences of Health Expenditure, Energy Consumption, and Environmental Pollution on Life Expectancy in Asia," IJERPH, MDPI, vol. 20(5), pages 1-18, February.
    10. Shazia Kousar & Farhan Ahmed & María de las Nieves López García & Nimra Ashraf, 2020. "Renewable Energy Consumption, Water Crises, and Environmental Degradation with Moderating Role of Governance: Dynamic Panel Analysis under Cross-Sectional Dependence," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    11. Rafiq, Shuddhasattwa & Nielsen, Ingrid & Smyth, Russell, 2017. "Effect of internal migration on the environment in China," Energy Economics, Elsevier, vol. 64(C), pages 31-44.
    12. Sun, Huaping & Samuel, Clottey Attuquaye & Kofi Amissah, Joshua Clifford & Taghizadeh-Hesary, Farhad & Mensah, Isaac Adjei, 2020. "Non-linear nexus between CO2 emissions and economic growth: A comparison of OECD and B&R countries," Energy, Elsevier, vol. 212(C).
    13. Jin, Taeyoung, 2022. "The evolutionary renewable energy and mitigation impact in OECD countries," Renewable Energy, Elsevier, vol. 189(C), pages 570-586.
    14. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    15. Dong, Kangyin & Sun, Renjin & Hochman, Gal, 2017. "Do natural gas and renewable energy consumption lead to less CO2 emission? Empirical evidence from a panel of BRICS countries," Energy, Elsevier, vol. 141(C), pages 1466-1478.
    16. Dierk Herzer, 2016. "Unions and Income Inequality: A Heterogeneous Panel Co-integration and Causality Analysis," LABOUR, CEIS, vol. 30(3), pages 318-346, September.
    17. Chen, Ping-Yu & Chen, Sheng-Tung & Hsu, Chia-Sheng & Chen, Chi-Chung, 2016. "Modeling the global relationships among economic growth, energy consumption and CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 420-431.
    18. Dierk Herzer & Holger Strulik, 2017. "Religiosity and income: a panel cointegration and causality analysis," Applied Economics, Taylor & Francis Journals, vol. 49(30), pages 2922-2938, June.
    19. Xu, Bin & Lin, Boqiang, 2019. "Can expanding natural gas consumption reduce China's CO2 emissions?," Energy Economics, Elsevier, vol. 81(C), pages 393-407.
    20. Haitao Hou & Wei Lu & Bing Liu & Zeina Hassanein & Hamid Mahmood & Samia Khalid, 2023. "Exploring the Role of Fossil Fuels and Renewable Energy in Determining Environmental Sustainability: Evidence from OECD Countries," Sustainability, MDPI, vol. 15(3), pages 1-13, January.

    More about this item

    Keywords

    New energy industry; Driving forces; Nonparametric additive regression models;
    All these keywords.

    JEL classification:

    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • K32 - Law and Economics - - Other Substantive Areas of Law - - - Energy, Environmental, Health, and Safety Law
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:70:y:2018:i:c:p:116-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.