IDEAS home Printed from
   My bibliography  Save this article

Quantifying the Effects of Expert Selection and Elicitation Design on Experts’ Confidence in Their Judgments About Future Energy Technologies


  • Gregory F. Nemet
  • Laura Diaz Anadon
  • Elena Verdolini


Expert elicitations are now frequently used to characterize uncertain future technology outcomes. However, their usefulness is limited, in part because: estimates across studies are not easily comparable; choices in survey design and expert selection may bias results; and overconfidence is a persistent problem. We provide quantitative evidence of how these choices affect experts’ estimates. We standardize data from 16 elicitations, involving 169 experts, on the 2030 costs of five energy technologies: nuclear, biofuels, bioelectricity, solar, and carbon capture. We estimate determinants of experts’ confidence using survey design, expert characteristics, and public R&D investment levels on which the elicited values are conditional. Our central finding is that when experts respond to elicitations in person (vs. online or mail) they ascribe lower confidence (larger uncertainty) to their estimates, but more optimistic assessments of best†case (10th percentile) outcomes. The effects of expert affiliation and country of residence vary by technology, but in general: academics and public†sector experts express lower confidence than private†sector experts; and E.U. experts are more confident than U.S. experts. Finally, extending previous technology†specific work, higher R&D spending increases experts’ uncertainty rather than resolves it. We discuss ways in which these findings should be seriously considered in interpreting the results of existing elicitations and in designing new ones.

Suggested Citation

  • Gregory F. Nemet & Laura Diaz Anadon & Elena Verdolini, 2017. "Quantifying the Effects of Expert Selection and Elicitation Design on Experts’ Confidence in Their Judgments About Future Energy Technologies," Risk Analysis, John Wiley & Sons, vol. 37(2), pages 315-330, February.
  • Handle: RePEc:wly:riskan:v:37:y:2017:i:2:p:315-330
    DOI: 10.1111/risa.12604

    Download full text from publisher

    File URL:
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Small, Mitchell J. & Wong-Parodi, Gabrielle & Kefford, Benjamin M. & Stringer, Martin & Schmeda-Lopez, Diego R. & Greig, Chris & Ballinger, Benjamin & Wilson, Stephen & Smart, Simon, 2019. "Generating linked technology-socioeconomic scenarios for emerging energy transitions," Applied Energy, Elsevier, vol. 239(C), pages 1402-1423.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:37:y:2017:i:2:p:315-330. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.