IDEAS home Printed from https://ideas.repec.org/a/oup/renvpo/v12y2018i1p133-153..html
   My bibliography  Save this article

Future Prospects for Energy Technologies: Insights from Expert Elicitations

Author

Listed:
  • Elena Verdolini
  • Laura Díaz Anadón
  • Erin Baker
  • Valentina Bosetti
  • Lara Aleluia Reis

Abstract

Expert elicitation is a structured approach for obtaining judgments from experts about items of interest to decision makers. This method has been increasingly applied in the energy domain to collect information on the future cost, technical performance, and associated uncertainty of specific energy technologies. This article has two main objectives: (1) to introduce the basics of expert elicitations, including their design and implementation, highlighting their advantages and disadvantages and their potential to inform policymaking and energy system decisions; and (2) to discuss and compare the results of a subset of the most recent expert elicitations on energy technologies, with a focus on future cost trajectories and implied cost reduction rates. We argue that the data on future energy costs provided by expert elicitations allows for more transparent and robust analyses that incorporate technical uncertainty, which can then be used to support the design and assessment of energy and climate change mitigation policies.

Suggested Citation

  • Elena Verdolini & Laura Díaz Anadón & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2018. "Future Prospects for Energy Technologies: Insights from Expert Elicitations," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 133-153.
  • Handle: RePEc:oup:renvpo:v:12:y:2018:i:1:p:133-153.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/reep/rex028
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stephen C. Hora & Benjamin R. Fransen & Natasha Hawkins & Irving Susel, 2013. "Median Aggregation of Distribution Functions," Decision Analysis, INFORMS, vol. 10(4), pages 279-291, December.
    2. Fiorese, Giulia & Catenacci, Michela & Verdolini, Elena & Bosetti, Valentina, 2013. "Advanced biofuels: Future perspectives from an expert elicitation survey," Energy Policy, Elsevier, vol. 56(C), pages 293-311.
    3. Bosetti, Valentina & Catenacci, Michela & Fiorese, Giulia & Verdolini, Elena, 2012. "The future prospect of PV and CSP solar technologies: An expert elicitation survey," Energy Policy, Elsevier, vol. 49(C), pages 308-317.
    4. Giacomo Marangoni & Gauthier De Maere & Valentina Bosetti, 2017. "Optimal Clean Energy R&D Investments Under Uncertainty," MITP: Mitigation, Innovation and Transformation Pathways 256056, Fondazione Eni Enrico Mattei (FEEM).
    5. Gregory F. Nemet & Laura Diaz Anadon & Elena Verdolini, 2017. "Quantifying the Effects of Expert Selection and Elicitation Design on Experts’ Confidence in Their Judgments About Future Energy Technologies," Risk Analysis, John Wiley & Sons, vol. 37(2), pages 315-330, February.
    6. Erin Baker & Valentina Bosetti & Ahti Salo, 2016. "Finding Common Ground when Experts Disagree: Belief Dominance over Portfolios of Alternatives," Working Papers 2016.46, Fondazione Eni Enrico Mattei.
    7. Elena Verdolini & Laura Díaz Anadón & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2018. "Future Prospects for Energy Technologies: Insights from Expert Elicitations," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 133-153.
    8. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    9. Ricci, Elena Claire & Bosetti, Valentina & Baker, Erin & Jenni, Karen E., 2014. "From Expert Elicitations to Integrated Assessment: Future Prospects of Carbon Capture Technologies," Climate Change and Sustainable Development 172451, Fondazione Eni Enrico Mattei (FEEM).
    10. Grubler, Arnulf, 2010. "The costs of the French nuclear scale-up: A case of negative learning by doing," Energy Policy, Elsevier, vol. 38(9), pages 5174-5188, September.
    11. Bistline, John E., 2014. "Energy technology expert elicitations: An application to natural gas turbine efficiencies," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 177-187.
    12. Baker, Erin & Keisler, Jeffrey M., 2011. "Cellulosic biofuels: Expert views on prospects for advancement," Energy, Elsevier, vol. 36(1), pages 595-605.
    13. Catenacci, Michela & Verdolini, Elena & Bosetti, Valentina & Fiorese, Giulia, 2013. "Going electric: Expert survey on the future of battery technologies for electric vehicles," Energy Policy, Elsevier, vol. 61(C), pages 403-413.
    14. Baker, Erin & Bosetti, Valentina & Jenni, Karen E. & Ricci, Elena Claire, 2014. "Facing the Experts: Survey Mode and Expert Elicitation," Climate Change and Sustainable Development 163585, Fondazione Eni Enrico Mattei (FEEM).
    15. Junginger, Martin & de Visser, Erika & Hjort-Gregersen, Kurt & Koornneef, Joris & Raven, Rob & Faaij, Andre & Turkenburg, Wim, 2006. "Technological learning in bioenergy systems," Energy Policy, Elsevier, vol. 34(18), pages 4024-4041, December.
    16. Diaz Anadon, Laura & Nemet, Gregory & Verdolini, Elena, 2013. "The Future Costs of Nuclear Power Using Multiple Expert Elicitations: Effects of RD&D and Elicitation Design," Climate Change and Sustainable Development 158747, Fondazione Eni Enrico Mattei (FEEM).
    17. Bronwyn H. Hall & Nathan Rosenberg (ed.), 2010. "Handbook of the Economics of Innovation," Handbook of the Economics of Innovation, Elsevier, edition 1, volume 1, number 1.
    18. Frank J. Convery & Gernot Wagner, 2015. "Reflections–Managing Uncertain Climates: Some Guidance for Policy Makers and Researchers," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 9(2), pages 304-320.
    19. Dewispelare, Aaron R. & Herren, L. Tandy & Clemen, Robert T., 1995. "The use of probability elicitation in the high-level nuclear waste regulation program," International Journal of Forecasting, Elsevier, vol. 11(1), pages 5-24, March.
    20. Stergios Athanassoglou & Valentina Bosetti, 2015. "Setting Environmental Policy When Experts Disagree," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(4), pages 497-516, August.
    21. Fiorese, Giulia & Catenacci, Michela & Bosetti, Valentina & Verdolini, Elena, 2014. "The power of biomass: Experts disclose the potential for success of bioenergy technologies," Energy Policy, Elsevier, vol. 65(C), pages 94-114.
    22. Farmer, J. Doyne & Lafond, François, 2016. "How predictable is technological progress?," Research Policy, Elsevier, vol. 45(3), pages 647-665.
    23. Verdolini, Elena & Anadon, Laura Diaz & Lu, Jiaqi & Nemet, Gregory F., 2015. "The effects of expert selection, elicitation design, and R&D assumptions on experts' estimates of the future costs of photovoltaics," Energy Policy, Elsevier, vol. 80(C), pages 233-243.
    24. Laura Díaz Anadón & Erin Baker & Valentina Bosetti, 2017. "Integrating uncertainty into public energy research and development decisions," Nature Energy, Nature, vol. 2(5), pages 1-14, May.
    25. J. Eric Bickel, 2007. "Some Comparisons among Quadratic, Spherical, and Logarithmic Scoring Rules," Decision Analysis, INFORMS, vol. 4(2), pages 49-65, June.
    26. Kenneth C. Lichtendahl & Yael Grushka-Cockayne & Robert L. Winkler, 2013. "Is It Better to Average Probabilities or Quantiles?," Management Science, INFORMS, vol. 59(7), pages 1594-1611, July.
    27. Usher, Will & Strachan, Neil, 2013. "An expert elicitation of climate, energy and economic uncertainties," Energy Policy, Elsevier, vol. 61(C), pages 811-821.
    28. Abigail R Colson & Roger M Cooke, 2018. "Expert Elicitation: Using the Classical Model to Validate Experts’ Judgments," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 113-132.
    29. Lina Escobar Rangel & François Lévêque, 2012. "Revisiting the cost escalation curse of nuclear power: New lessons from the French experience," Working Papers hal-00780566, HAL.
    30. John Quigley & Abigail Colson & Willy Aspinall & Roger M. Cooke, 2018. "Elicitation in the Classical Model," International Series in Operations Research & Management Science, in: Luis C. Dias & Alec Morton & John Quigley (ed.), Elicitation, chapter 0, pages 15-36, Springer.
    31. Bunn, Derek W., 1985. "Forecasting electric loads with multiple predictors," Energy, Elsevier, vol. 10(6), pages 727-732.
    32. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    33. Robert T. Clemen & Robert L. Winkler, 1985. "Limits for the Precision and Value of Information from Dependent Sources," Operations Research, INFORMS, vol. 33(2), pages 427-442, April.
    34. Nemet, Gregory F., 2009. "Interim monitoring of cost dynamics for publicly supported energy technologies," Energy Policy, Elsevier, vol. 37(3), pages 825-835, March.
    35. Ronald A. Howard, 1988. "Decision Analysis: Practice and Promise," Management Science, INFORMS, vol. 34(6), pages 679-695, June.
    36. Ryan Wiser & Karen Jenni & Joachim Seel & Erin Baker & Maureen Hand & Eric Lantz & Aaron Smith, 2016. "Expert elicitation survey on future wind energy costs," Nature Energy, Nature, vol. 1(10), pages 1-8, October.
    37. Cooke, Roger M. & Goossens, Louis L.H.J., 2008. "TU Delft expert judgment data base," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 657-674.
    38. Scherer, F. M. & Harhoff, Dietmar, 2000. "Technology policy for a world of skew-distributed outcomes," Research Policy, Elsevier, vol. 29(4-5), pages 559-566, April.
    39. Gillenwater, Michael, 2013. "Probabilistic decision model of wind power investment and influence of green power market," Energy Policy, Elsevier, vol. 63(C), pages 1111-1125.
    40. Lina Escobar Rangel and Francois Leveque, 2015. "Revisiting the Cost Escalation Curse of Nuclear Power: New Lessons from the French Experience," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    41. Stein W. Wallace, 2000. "Decision Making Under Uncertainty: Is Sensitivity Analysis of Any Use?," Operations Research, INFORMS, vol. 48(1), pages 20-25, February.
    42. Rao, Anand B. & Rubin, Edward S. & Keith, David W. & Granger Morgan, M., 2006. "Evaluation of potential cost reductions from improved amine-based CO2 capture systems," Energy Policy, Elsevier, vol. 34(18), pages 3765-3772, December.
    43. Walker, William, 2000. "Entrapment in large technology systems: institutional commitment and power relations," Research Policy, Elsevier, vol. 29(7-8), pages 833-846, August.
    44. Antony Millner & Simon Dietz & Geoffrey Heal, 2013. "Scientific Ambiguity and Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(1), pages 21-46, May.
    45. Valentina Bosetti & Michela Catenacci & Giulia Fiorese & Elena Verdolini, 2012. "The Future Prospects of PV and CSP Solar Technologies," Review of Environment, Energy and Economics - Re3, Fondazione Eni Enrico Mattei, January.
    46. Chung, Timothy S. & Patiño-Echeverri, Dalia & Johnson, Timothy L., 2011. "Expert assessments of retrofitting coal-fired power plants with carbon dioxide capture technologies," Energy Policy, Elsevier, vol. 39(9), pages 5609-5620, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Verdolini & Laura Díaz Anadón & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2018. "Future Prospects for Energy Technologies: Insights from Expert Elicitations," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 133-153.
    2. Small, Mitchell J. & Wong-Parodi, Gabrielle & Kefford, Benjamin M. & Stringer, Martin & Schmeda-Lopez, Diego R. & Greig, Chris & Ballinger, Benjamin & Wilson, Stephen & Smart, Simon, 2019. "Generating linked technology-socioeconomic scenarios for emerging energy transitions," Applied Energy, Elsevier, vol. 239(C), pages 1402-1423.
    3. David Popp, 2019. "Environmental policy and innovation: a decade of research," CESifo Working Paper Series 7544, CESifo.
    4. Franklyn Kanyako & Erin Baker, 2021. "Uncertainty analysis of the future cost of wind energy on climate change mitigation," Climatic Change, Springer, vol. 166(1), pages 1-17, May.
    5. Whiston, Michael M. & Lima Azevedo, Inês M. & Litster, Shawn & Samaras, Constantine & Whitefoot, Kate S. & Whitacre, Jay F., 2021. "Paths to market for stationary solid oxide fuel cells: Expert elicitation and a cost of electricity model," Applied Energy, Elsevier, vol. 304(C).
    6. Cleary, Kathryne & Funke, Christoph & Witkin, Steven & Shawhan, Daniel, 2021. "The Value of Advanced Energy Funding: Projected Effects of Proposed US Funding for Advanced Energy Technologies," RFF Working Paper Series 21-10, Resources for the Future.
    7. Brozynski, Max T. & Leibowicz, Benjamin D., 2020. "Markov models of policy support for technology transitions," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1052-1069.
    8. Lara Aleluia Reis & Zoi Vrontisi & Elena Verdolini & Kostas Fragkiadakis & Massimo Tavoni, 2023. "A research and development investment strategy to achieve the Paris climate agreement," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Whiston, Michael M. & Lima Azevedo, Inês M. & Litster, Shawn & Samaras, Constantine & Whitefoot, Kate S. & Whitacre, Jay F., 2022. "Expert elicitation on paths to advance fuel cell electric vehicles," Energy Policy, Elsevier, vol. 160(C).
    10. Kostas Fragkiadakis & Panagiotis Fragkos & Leonidas Paroussos, 2020. "Low-Carbon R&D Can Boost EU Growth and Competitiveness," Energies, MDPI, vol. 13(19), pages 1-29, October.
    11. Hiroto Shiraki & Masahiro Sugiyama, 2020. "Back to the basic: toward improvement of technoeconomic representation in integrated assessment models," Climatic Change, Springer, vol. 162(1), pages 13-24, September.
    12. Haris Doukas & Alexandros Nikas & Mikel González-Eguino & Iñaki Arto & Annela Anger-Kraavi, 2018. "From Integrated to Integrative: Delivering on the Paris Agreement," Sustainability, MDPI, vol. 10(7), pages 1-10, July.
    13. Polzin, Friedemann & Sanders, Mark, 2020. "How to finance the transition to low-carbon energy in Europe?," Energy Policy, Elsevier, vol. 147(C).
    14. Milford, James & Henrion, Max & Hunter, Chad & Newes, Emily & Hughes, Caroline & Baldwin, Samuel F., 2022. "Energy sector portfolio analysis with uncertainty," Applied Energy, Elsevier, vol. 306(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Diaz Anadon & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2016. "Expert views - and disagreements - about the potential of energy technology R&D," Climatic Change, Springer, vol. 136(3), pages 677-691, June.
    2. Baker, Erin & Bosetti, Valentina & Salo, Ahti, 2016. "Finding Common Ground when Experts Disagree: Belief Dominance over Portfolios of Alternatives," MITP: Mitigation, Innovation and Transformation Pathways 243147, Fondazione Eni Enrico Mattei (FEEM).
    3. Laura Diaz Anadon & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2016. "Too Early to Pick Winners: Disagreement across Experts Implies the Need to Diversify R&D Investment," Working Papers 2016.22, Fondazione Eni Enrico Mattei.
    4. Baker, Erin & Bosetti, Valentina & Anadon, Laura Diaz & Henrion, Max & Aleluia Reis, Lara, 2015. "Future costs of key low-carbon energy technologies: Harmonization and aggregation of energy technology expert elicitation data," Energy Policy, Elsevier, vol. 80(C), pages 219-232.
    5. Erin Baker & Olaitan Olaleye & Lara Aleluia Reis, 2015. "Decision Frameworks and the Investment in R&D," Working Papers 2015.42, Fondazione Eni Enrico Mattei.
    6. Baker, Erin & Bosetti, Valentina & Salo, Ahti, 2020. "Robust portfolio decision analysis: An application to the energy research and development portfolio problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1107-1120.
    7. Milford, James & Henrion, Max & Hunter, Chad & Newes, Emily & Hughes, Caroline & Baldwin, Samuel F., 2022. "Energy sector portfolio analysis with uncertainty," Applied Energy, Elsevier, vol. 306(PA).
    8. Erin Baker & Valentina Bosetti & Ahti Salo, 2017. "Finding common ground when experts disagree: Robust portfolio decision analysis," Working Papers 2017/11, Institut d'Economia de Barcelona (IEB).
    9. Stergios Athanassoglou & Valentina Bosetti, 2015. "Setting Environmental Policy When Experts Disagree," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(4), pages 497-516, August.
    10. Gregory F. Nemet & Laura Diaz Anadon & Elena Verdolini, 2017. "Quantifying the Effects of Expert Selection and Elicitation Design on Experts’ Confidence in Their Judgments About Future Energy Technologies," Risk Analysis, John Wiley & Sons, vol. 37(2), pages 315-330, February.
    11. Baker, Erin & Olaleye, Olaitan & Aleluia Reis, Lara, 2015. "Decision frameworks and the investment in R&D," Energy Policy, Elsevier, vol. 80(C), pages 275-285.
    12. Whiston, Michael M. & Lima Azevedo, Inês M. & Litster, Shawn & Samaras, Constantine & Whitefoot, Kate S. & Whitacre, Jay F., 2022. "Expert elicitation on paths to advance fuel cell electric vehicles," Energy Policy, Elsevier, vol. 160(C).
    13. Zhou, Fan & Page, Lionel & Perrons, Robert K. & Zheng, Zuduo & Washington, Simon, 2019. "Long-term forecasts for energy commodities price: What the experts think," Energy Economics, Elsevier, vol. 84(C).
    14. Bistline, John E., 2014. "Energy technology expert elicitations: An application to natural gas turbine efficiencies," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 177-187.
    15. Diaz Anadon, Laura & Bosetti, Valentina & Chan, Gabriel & Nemet, Gregory & Verdolini, Elena, 2014. "Energy Technology Expert Elicitations for Policy: Workshops, Modeling, and Meta-analysis," Working Paper Series rwp14-054, Harvard University, John F. Kennedy School of Government.
    16. Nemet, Gregory F. & Baker, Erin & Jenni, Karen E., 2013. "Modeling the future costs of carbon capture using experts' elicited probabilities under policy scenarios," Energy, Elsevier, vol. 56(C), pages 218-228.
    17. Fiorese, Giulia & Catenacci, Michela & Bosetti, Valentina & Verdolini, Elena, 2014. "The power of biomass: Experts disclose the potential for success of bioenergy technologies," Energy Policy, Elsevier, vol. 65(C), pages 94-114.
    18. Hernandez-Negron, Christian G. & Baker, Erin & Goldstein, Anna P., 2023. "A hypothesis for experience curves of related technologies with an application to wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    19. Catenacci, Michela & Verdolini, Elena & Bosetti, Valentina & Fiorese, Giulia, 2013. "Going electric: Expert survey on the future of battery technologies for electric vehicles," Energy Policy, Elsevier, vol. 61(C), pages 403-413.
    20. Anil Gaba & Ilia Tsetlin & Robert L. Winkler, 2017. "Combining Interval Forecasts," Decision Analysis, INFORMS, vol. 14(1), pages 1-20, March.

    More about this item

    Keywords

    energy technologies; R&D investments; expert elicitations; uncertainty;
    All these keywords.

    JEL classification:

    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:renvpo:v:12:y:2018:i:1:p:133-153.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/aereeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.