IDEAS home Printed from https://ideas.repec.org/p/zbw/wgspdp/202203.html
   My bibliography  Save this paper

Agrivoltaics across the water-energy-food-nexus in Africa: Opportunities and challenges for rural communities in Mali

Author

Listed:
  • Cheo, Ambe Emmanuel
  • Adelhardt, Nora
  • Krieger, Tim
  • Berneiser, Jessica
  • Sanchez Santillano, Federico Alberto
  • Bingwa, Brendon
  • Suleiman, Nischa
  • Thiele, Patricia
  • Royes, Alvaro
  • Gudopp, Daniel
  • Sidibé, Amadou
  • Fahmy, Karim
  • Tambo, Erick
  • Diallo, Yacouba
  • Sogoba, Bougouna

Abstract

Small-scale, rain-fed subsistence agriculture and pastoralism represent the major activity for Africa. For Mali, this represents about 80% of the population employed by the agricultural sector and contributes to about 42% of the Gross domestic product (GDP). The overreliance on rainfall, competing for the most valuable lands, the increasing scarcity of water, the lack of innovative technologies and infrastructure has made the agriculture sector vulnerable to climatic and non-climatic risks including an increase in the number of land conflicts. In addition, inadequate access to affordable energy has also limited social opportunities for the poor communities, especially in rural areas of Mali. Water Energy and Food (WEF) Nexus solutions such as agrivoltaics are increasingly being deployed to improve access to water for agricultural uses, improve yields and incomes, reduce drudgery especially for women, enhancing resilience and microclimate, improve land use efficiency and food security. This innovative approach has opened new prospects to improve the quality of life for people as well as their environment as a whole. Agrivoltaics is rapidly gaining popularity in many countries but not yet in African countries. This paper presents a feasibility analysis, recommendations and future directions of agrivoltaics in Mali and in Africa as a whole. Furthermore, applications of agrivoltaic systems are discussed in terms of their socio-economic and environmental effects, emphasizing also the necessity of integrative thinking in the process of strategic planning for achieving security in water, energy and food.

Suggested Citation

  • Cheo, Ambe Emmanuel & Adelhardt, Nora & Krieger, Tim & Berneiser, Jessica & Sanchez Santillano, Federico Alberto & Bingwa, Brendon & Suleiman, Nischa & Thiele, Patricia & Royes, Alvaro & Gudopp, Danie, 2022. "Agrivoltaics across the water-energy-food-nexus in Africa: Opportunities and challenges for rural communities in Mali," Discussion Paper Series 2022-03, University of Freiburg, Wilfried Guth Endowed Chair for Constitutional Political Economy and Competition Policy.
  • Handle: RePEc:zbw:wgspdp:202203
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/253418/1/1800346131.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nygaard, Ivan, 2010. "Institutional options for rural energy access: Exploring the concept of the multifunctional platform in West Africa," Energy Policy, Elsevier, vol. 38(2), pages 1192-1201, February.
    2. Matthias Bujko & Christian Fischer & Tim Krieger & Daniel Meierrieks, 2016. "How Institutions Shape Land Deals: The Role of Corruption," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 33(3), pages 205-217, October.
    3. Álvarez-Herránz, Agustín & Balsalobre, Daniel & Cantos, José María & Shahbaz, Muhammad, 2017. "Energy Innovations-GHG Emissions Nexus: Fresh Empirical Evidence from OECD Countries," Energy Policy, Elsevier, vol. 101(C), pages 90-100.
    4. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    5. Greg A. Barron-Gafford & Mitchell A. Pavao-Zuckerman & Rebecca L. Minor & Leland F. Sutter & Isaiah Barnett-Moreno & Daniel T. Blackett & Moses Thompson & Kirk Dimond & Andrea K. Gerlak & Gary P. Nabh, 2019. "Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands," Nature Sustainability, Nature, vol. 2(9), pages 848-855, September.
    6. Rebecca R. Hernandez & Alona Armstrong & Jennifer Burney & Greer Ryan & Kara Moore-O’Leary & Ibrahima Diédhiou & Steven M. Grodsky & Leslie Saul-Gershenz & Rob Davis & Jordan Macknick & Dustin Mulvane, 2019. "Techno–ecological synergies of solar energy for global sustainability," Nature Sustainability, Nature, vol. 2(7), pages 560-568, July.
    7. Brewer, Justin & Ames, Daniel P. & Solan, David & Lee, Randy & Carlisle, Juliet, 2015. "Using GIS analytics and social preference data to evaluate utility-scale solar power site suitability," Renewable Energy, Elsevier, vol. 81(C), pages 825-836.
    8. Gazull, Laurent & Gautier, Denis & Montagne, Pierre, 2019. "Household energy transition in Sahelian cities: An analysis of the failure of 30 years of energy policies in Bamako, Mali," Energy Policy, Elsevier, vol. 129(C), pages 1080-1089.
    9. Gallagher, Kelly Sims, 2006. "Limits to leapfrogging in energy technologies? Evidence from the Chinese automobile industry," Energy Policy, Elsevier, vol. 34(4), pages 383-394, March.
    10. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    11. Sovacool, Benjamin K. & Clarke, Shannon & Johnson, Katie & Crafton, Meredith & Eidsness, Jay & Zoppo, David, 2013. "The energy-enterprise-gender nexus: Lessons from the Multifunctional Platform (MFP) in Mali," Renewable Energy, Elsevier, vol. 50(C), pages 115-125.
    12. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    13. Orazio Attanasio & Costas Meghir & Emily Nix & Francesca Salvati, 2017. "Human Capital Growth and Poverty: Evidence from Ethiopia and Peru," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 25, pages 234-259, April.
    14. Trommsdorff, Max & Kang, Jinsuk & Reise, Christian & Schindele, Stephan & Bopp, Georg & Ehmann, Andrea & Weselek, Axel & Högy, Petra & Obergfell, Tabea, 2021. "Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    2. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Jing, Rui & Liu, Jiahui & Zhang, Haoran & Zhong, Fenglin & Liu, Yupeng & Lin, Jianyi, 2022. "Unlock the hidden potential of urban rooftop agrivoltaics energy-food-nexus," Energy, Elsevier, vol. 256(C).
    4. Sojib Ahmed, M. & Rezwan Khan, M. & Haque, Anisul & Ryyan Khan, M., 2022. "Agrivoltaics analysis in a techno-economic framework: Understanding why agrivoltaics on rice will always be profitable," Applied Energy, Elsevier, vol. 323(C).
    5. Gonocruz, Ruth Anne Tanlioco & Yoshida, Yoshikuni & Ozawa, Akito & Aguirre, Rodolfo A. & Maguindayao, Edward Joseph H., 2023. "Impacts of agrivoltaics in rural electrification and decarbonization in the Philippines," Applied Energy, Elsevier, vol. 350(C).
    6. Agir, Seven & Derin-Gure, Pinar & Senturk, Bilge, 2023. "Farmers’ perspectives on challenges and opportunities of agrivoltaics in Turkiye: An institutional perspective," Renewable Energy, Elsevier, vol. 212(C), pages 35-49.
    7. Lee, Sangik & Lee, Jong-hyuk & Jeong, Youngjoon & Kim, Dongsu & Seo, Byung-hun & Seo, Ye-jin & Kim, Taejin & Choi, Won, 2023. "Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment," Applied Energy, Elsevier, vol. 341(C).
    8. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Daniel Matulić & Željko Andabaka & Sanja Radman & Goran Fruk & Josip Leto & Jakša Rošin & Mirta Rastija & Ivana Varga & Tea Tomljanović & Hrvoje Čeprnja & Marko Karoglan, 2023. "Agrivoltaics and Aquavoltaics: Potential of Solar Energy Use in Agriculture and Freshwater Aquaculture in Croatia," Agriculture, MDPI, vol. 13(7), pages 1-26, July.
    10. Gorjian, Shiva & Jalili Jamshidian, Farid & Gorjian, Alireza & Faridi, Hamideh & Vafaei, Mohammad & Zhang, Fangxin & Liu, Wen & Elia Campana, Pietro, 2023. "Technological advancements and research prospects of innovative concentrating agrivoltaics," Applied Energy, Elsevier, vol. 337(C).
    11. Katharina Löhr & Custódio Efraim Matavel & Sophia Tadesse & Masoud Yazdanpanah & Stefan Sieber & Nadejda Komendantova, 2022. "Just Energy Transition: Learning from the Past for a More Just and Sustainable Hydrogen Transition in West Africa," Land, MDPI, vol. 11(12), pages 1-23, December.
    12. Seven Ağır & Pınar Derin Güre & Bilge Şentürk, 2023. "AgroPV’s Potential Opportunities and Challenges In A Mediterranean Developing Country Setting: A Farmer’s Perspectivetolia," ERC Working Papers 2301, ERC - Economic Research Center, Middle East Technical University, revised Feb 2023.
    13. Holstenkamp, Lars, 2019. "What do we know about cooperative sustainable electrification in the global South? A synthesis of the literature and refined social-ecological systems framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 307-320.
    14. Edouard, Sylvain & Combes, Didier & Van Iseghem, Mike & Ng Wing Tin, Marion & Escobar-Gutiérrez, Abraham J., 2023. "Increasing land productivity with agriphotovoltaics: Application to an alfalfa field," Applied Energy, Elsevier, vol. 329(C).
    15. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    16. Fernández, Eduardo F. & Villar-Fernández, Antonio & Montes-Romero, Jesús & Ruiz-Torres, Laura & Rodrigo, Pedro M. & Manzaneda, Antonio J. & Almonacid, Florencia, 2022. "Global energy assessment of the potential of photovoltaics for greenhouse farming," Applied Energy, Elsevier, vol. 309(C).
    17. Katkar, Venktesh V. & Sward, Jeffrey A. & Worsley, Alex & Zhang, K. Max, 2021. "Strategic land use analysis for solar energy development in New York State," Renewable Energy, Elsevier, vol. 173(C), pages 861-875.
    18. Wang, Hsiao-Wen & Dodd, Adrienne & Ko, Yekang, 2022. "Resolving the conflict of greens: A GIS-based and participatory least-conflict siting framework for solar energy development in southwest Taiwan," Renewable Energy, Elsevier, vol. 197(C), pages 879-892.
    19. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    20. Vaidyanathan, Geeta & Sankaranarayanan, Ramani & Yap, Nonita T., 2019. "Bridging the chasm – Diffusion of energy innovations in poor infrastructure starved communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 243-255.

    More about this item

    Keywords

    Nexus solutions; Climate change; Sahel region; Sub-Saharan Africa; Innovation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:wgspdp:202203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/wffrede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.