IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v63y2013icp531-542.html
   My bibliography  Save this article

The impact of city-level permitting processes on residential photovoltaic installation prices and development times: An empirical analysis of solar systems in California cities

Author

Listed:
  • Dong, Changgui
  • Wiser, Ryan

Abstract

With “soft” costs accounting for well over 50% of the installed price of residential photovoltaic (PV) systems in the United States, this study evaluates the effect of city-level permitting processes on the installed price of residential PV systems and on the time required to develop those systems. The study uses a unique dataset from the U.S. Department of Energy's Rooftop Solar Challenge Program, which includes city-level permitting process “scores,” plus data from the California Solar Initiative and the U.S. Census. Econometric methods are used to quantify the price and development-time effects of city-level permitting processes on more than 3000 PV installations across 44 California cities in 2011. Results suggest that cities with the most favorable permitting practices can reduce average residential PV prices by $0.27–$0.77/W (4–12% of median PV prices in California) compared with cities with the most onerous permitting practices, depending on the regression model used. Though the empirical models for development times are less robust, results suggest that the most streamlined permitting practices may shorten development times by around 24 days on average (25% of the median development time). These findings illustrate the potential price and development-time benefits of streamlining local permitting procedures for PV systems.

Suggested Citation

  • Dong, Changgui & Wiser, Ryan, 2013. "The impact of city-level permitting processes on residential photovoltaic installation prices and development times: An empirical analysis of solar systems in California cities," Energy Policy, Elsevier, vol. 63(C), pages 531-542.
  • Handle: RePEc:eee:enepol:v:63:y:2013:i:c:p:531-542
    DOI: 10.1016/j.enpol.2013.08.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513008586
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peters, Michael & Schmidt, Tobias S. & Wiederkehr, David & Schneider, Malte, 2011. "Shedding light on solar technologies'A techno-economic assessment and its policy implications," Energy Policy, Elsevier, vol. 39(10), pages 6422-6439, October.
    2. Kahouli-Brahmi, Sondes, 2009. "Testing for the presence of some features of increasing returns to adoption factors in energy system dynamics: An analysis via the learning curve approach," Ecological Economics, Elsevier, vol. 68(4), pages 1195-1212, February.
    3. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    4. Yu, C.F. & van Sark, W.G.J.H.M. & Alsema, E.A., 2011. "Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 324-337, January.
    5. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    6. Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
    7. Arthur van Benthem & Kenneth Gillingham & James Sweeney, 2008. "Learning-by-Doing and the Optimal Solar Policy in California," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 131-152.
    8. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    9. Söderholm, Patrik & Sundqvist, Thomas, 2007. "Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies," Renewable Energy, Elsevier, vol. 32(15), pages 2559-2578.
    10. Martinsen, Thomas, 2011. "Technology learning in a small open economy--The systems, modelling and exploiting the learning effect," Energy Policy, Elsevier, vol. 39(5), pages 2361-2372, May.
    11. Bazilian, Morgan & Onyeji, Ijeoma & Liebreich, Michael & MacGill, Ian & Chase, Jennifer & Shah, Jigar & Gielen, Dolf & Arent, Doug & Landfear, Doug & Zhengrong, Shi, 2013. "Re-considering the economics of photovoltaic power," Renewable Energy, Elsevier, vol. 53(C), pages 329-338.
    12. Zweibel, Ken, 2010. "Should solar photovoltaics be deployed sooner because of long operating life at low, predictable cost?," Energy Policy, Elsevier, vol. 38(11), pages 7519-7530, November.
    13. Shum, Kwok L. & Watanabe, Chihiro, 2008. "Towards a local learning (innovation) model of solar photovoltaic deployment," Energy Policy, Elsevier, vol. 36(2), pages 508-521, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Overholm, Harald, 2015. "Spreading the rooftop revolution: What policies enable solar-as-a-service?," Energy Policy, Elsevier, vol. 84(C), pages 69-79.
    2. Wang, Derek D. & Sueyoshi, Toshiyuki, 2017. "Assessment of large commercial rooftop photovoltaic system installations: Evidence from California," Applied Energy, Elsevier, vol. 188(C), pages 45-55.
    3. Neij, Lena & Heiskanen, Eva & Strupeit, Lars, 2017. "The deployment of new energy technologies and the need for local learning," Energy Policy, Elsevier, vol. 101(C), pages 274-283.
    4. Armendariz-Lopez, J.F. & Luna-Leon, A. & Gonzalez-Trevizo, M.E. & Arena-Granados, A.P. & Bojorquez-Morales, G., 2016. "Life cycle cost of photovoltaic technologies in commercial buildings in Baja California, Mexico," Renewable Energy, Elsevier, vol. 87(P1), pages 564-571.
    5. Burkhardt, Jesse & Wiser, Ryan & Darghouth, Naïm & Dong, C.G. & Huneycutt, Joshua, 2015. "Exploring the impact of permitting and local regulatory processes on residential solar prices in the United States," Energy Policy, Elsevier, vol. 78(C), pages 102-112.
    6. Kenneth Gillingham, Hao Deng, Ryan Wiser, Naim Darghouth, Gregory Nemet, Galen Barbose, Varun Rai, and Changgui Dong, 2016. "Deconstructing Solar Photovoltaic Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    7. Li, Hui & Yi, Hongtao, 2014. "Multilevel governance and deployment of solar PV panels in U.S. cities," Energy Policy, Elsevier, vol. 69(C), pages 19-27.
    8. repec:eee:eneeco:v:65:y:2017:i:c:p:389-398 is not listed on IDEAS
    9. Yilmaz, Saban & Ozcalik, Hasan Riza & Kesler, Selami & Dincer, Furkan & Yelmen, Bekir, 2015. "The analysis of different PV power systems for the determination of optimal PV panels and system installation—A case study in Kahramanmaras, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1015-1024.
    10. repec:eee:rensus:v:77:y:2017:i:c:p:273-286 is not listed on IDEAS
    11. Strupeit, Lars & Neij, Lena, 2017. "Cost dynamics in the deployment of photovoltaics: Insights from the German market for building-sited systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 948-960.
    12. Wiggins, Seth, 2016. "It’s All Local? How Sub-State Policies Affect Western US Residential Solar Adoption," 2016 Annual Meeting, July 31-August 2, 2016, Boston, Massachusetts 235667, Agricultural and Applied Economics Association.

    More about this item

    Keywords

    Photovoltaic; Permitting; Installed prices;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:63:y:2013:i:c:p:531-542. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.