IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v92y2016icp255-269.html
   My bibliography  Save this article

Innovation subsidies versus consumer subsidies: A real options analysis of solar energy

Author

Listed:
  • Torani, Kiran
  • Rausser, Gordon
  • Zilberman, David

Abstract

Given the interest in the commercialization of affordable, clean energy technologies, we examine the prospects of solar photovoltaics (PV). We consider the question of how to transition to a meaningful percentage of solar energy in a sustainable manner and which policies are most effective in accelerating adoption. This paper develops a stochastic dynamic model of the adoption of solar PV in the residential and commercial sector under two sources of uncertainty – the price of electricity and cost of solar. The analytic results suggest that a high rate of innovation may delay adoption of a new technology if the consumer has rational price expectations. We simulate the model across alternative rates technological change, electricity prices, subsidies and carbon taxes. It is shown that there will be a displacement of incumbent technologies and a widespread shift towards solar PV in under 30 years – and that this can occur without consumer incentives and carbon pricing. We show that these policies have a modest impact in accelerating adoption, and that they may not be an effective part of climate policy. Instead, results demonstrate that further technological change is the crucial determinant and main driver of adoption. Further, results indicate that subsidies and taxes become increasingly ineffective with higher rates of technological change.

Suggested Citation

  • Torani, Kiran & Rausser, Gordon & Zilberman, David, 2016. "Innovation subsidies versus consumer subsidies: A real options analysis of solar energy," Energy Policy, Elsevier, vol. 92(C), pages 255-269.
  • Handle: RePEc:eee:enepol:v:92:y:2016:i:c:p:255-269
    DOI: 10.1016/j.enpol.2015.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515300203
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    2. Fleten, S.-E. & Maribu, K.M. & Wangensteen, I., 2007. "Optimal investment strategies in decentralized renewable power generation under uncertainty," Energy, Elsevier, vol. 32(5), pages 803-815.
    3. Pindyck, Robert S., 2000. "Irreversibilities and the timing of environmental policy," Resource and Energy Economics, Elsevier, vol. 22(3), pages 233-259, July.
    4. Derek M. Lemoine, 2010. "Valuing Plug-In Hybrid Electric Vehicles' Battery Capacity Using a Real Options Framework," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 113-144.
    5. Kenneth J. Arrow & Anthony C. Fisher, 1974. "Environmental Preservation, Uncertainty, and Irreversibility," The Quarterly Journal of Economics, Oxford University Press, vol. 88(2), pages 312-319.
    6. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474, October.
    7. Sagar, Ambuj D. & van der Zwaan, Bob, 2006. "Technological innovation in the energy sector: R&D, deployment, and learning-by-doing," Energy Policy, Elsevier, vol. 34(17), pages 2601-2608, November.
    8. Brennan, Michael J & Schwartz, Eduardo S, 1985. "Evaluating Natural Resource Investments," The Journal of Business, University of Chicago Press, vol. 58(2), pages 135-157, April.
    9. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    10. Schmit, T.M. & J., Luo & Conrad, J.M., 2011. "Estimating the influence of U.S. ethanol policy on plant investment decisions: A real options analysis with two stochastic variables," Energy Economics, Elsevier, vol. 33(6), pages 1194-1205.
    11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    12. Jon M. Conrad, 1980. "Quasi-Option Value and the Expected Value of Information," The Quarterly Journal of Economics, Oxford University Press, vol. 94(4), pages 813-820.
    13. Janis M. Carey & David Zilberman, 2002. "A Model of Investment under Uncertainty: Modern Irrigation Technology and Emerging Markets in Water," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(1), pages 171-183.
    14. Chakravorty, Ujjayant & Roumasset, James & Tse, Kinping, 1997. "Endogenous Substitution among Energy Resources and Global Warming," Journal of Political Economy, University of Chicago Press, vol. 105(6), pages 1201-1234, December.
    15. McDonald, Robert L & Siegel, Daniel R, 1985. "Investment and the Valuation of Firms When There Is an Option to Shut Down," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 26(2), pages 331-349, June.
    16. Robert S. Pindyck, 2001. "The Dynamics of Commodity Spot and Futures Markets: A Primer," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamed, Tareq Abu & Bressler, Lindsey, 2019. "Energy security in Israel and Jordan: The role of renewable energy sources," Renewable Energy, Elsevier, vol. 135(C), pages 378-389.
    2. Cheng, Cheng & Wang, Zhen & Liu, Mingming & Chen, Qiang & Gbatu, Abimelech Paye & Ren, Xiaohang, 2017. "Defer option valuation and optimal investment timing of solar photovoltaic projects under different electricity market systems and support schemes," Energy, Elsevier, vol. 127(C), pages 594-610.
    3. Janda, Karel & Málek, Jan & Rečka, Lukáš, 2017. "Influence of renewable energy sources on transmission networks in Central Europe," Energy Policy, Elsevier, vol. 108(C), pages 524-537.
    4. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    5. Romano, Teresa & Fumagalli, Elena, 2018. "Greening the power generation sector: Understanding the role of uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 272-286.
    6. Cailou Jiang & Ying Zhang & Maoliang Bu & Weishu Liu, 2018. "The Effectiveness of Government Subsidies on Manufacturing Innovation: Evidence from the New Energy Vehicle Industry in China," Sustainability, MDPI, Open Access Journal, vol. 10(6), pages 1-1, May.
    7. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.
    8. Chuan-Chuan Ko & Chien-Yu Liu & Zan-Yu Chen & Jing Zhou, 2019. "Sustainable Development Economic Strategy Model for Reducing Carbon Emission by Using Real Options Approach," Sustainability, MDPI, Open Access Journal, vol. 11(19), pages 1-1, October.
    9. Andreas Welling, 2017. "Green Finance: Recent developments, characteristics and important actors," FEMM Working Papers 170002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    10. Kozlova, Mariia, 2017. "Real option valuation in renewable energy literature: Research focus, trends and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 180-196.
    11. Weidong Chen & Yujie Bi, 2018. "Electricity price subsidy or carbon-trading subsidy: which is more efficient to develop photovoltaic power generation from a government perspective?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(5), pages 667-683, June.
    12. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    13. Sampaio, Priscila Gonçalves Vasconcelos & González, Mario Orestes Aguirre, 2017. "Photovoltaic solar energy: Conceptual framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 590-601.
    14. Luňáčková, Petra & Průša, Jan & Janda, Karel, 2017. "The merit order effect of Czech photovoltaic plants," Energy Policy, Elsevier, vol. 106(C), pages 138-147.
    15. Martina Assereto & Julie Byrne, 2020. "The Implications of Policy Uncertainty on Solar Photovoltaic Investment," Energies, MDPI, Open Access Journal, vol. 13(23), pages 1-1, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:92:y:2016:i:c:p:255-269. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.