IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp1258.html
   My bibliography  Save this paper

Have State Renewable Portfolio Standards Really Worked?: Synthesizing Past Policy Assessments

Author

Listed:
  • Gireesh Shrimali
  • Steffen Jenner
  • Felix Groba
  • Gabriel Chan
  • Joe Indvik

Abstract

Renewable portfolio standards (RPS) are the most popular U.S. state-level policies for promoting deployment of renewable electricity (RES-E). While several econometric studies have estimated the effect of RPS on in-state RES-E deployment, results are contradictory. We reconcile these studies and move toward a definitive answer to the question of RPS effectiveness. We conduct an analysis using time series cross sectional regressions - including the most nuanced controls for policy design features to date - and nonparametric matching analysis. We find that higher RPS stringency does not necessarily drive more RES-E deployment. We examine several RPS design features and market characteristics (including REC unbundling, RPS in neighboring states, out-of-state renewable energy purchases) that may explain the gap between effective and ineffective policies. We also investigate other RES-E policies and technology-specific effects. Ultimately, we show that RPS effectiveness is largely explained by a combination of policy design, market context, and inter-state trading effects.

Suggested Citation

  • Gireesh Shrimali & Steffen Jenner & Felix Groba & Gabriel Chan & Joe Indvik, 2012. "Have State Renewable Portfolio Standards Really Worked?: Synthesizing Past Policy Assessments," Discussion Papers of DIW Berlin 1258, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1258
    as

    Download full text from publisher

    File URL: http://www.diw.de/documents/publikationen/73/diw_01.c.412667.de/dp1258.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. António Marques & José Fuinhas & José Manso, 2011. "A Quantile Approach to Identify Factors Promoting Renewable Energy in European Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(3), pages 351-366, July.
    2. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    3. Thomas P. Lyon & Haitao Yin, 2010. "Why Do States Adopt Renewable Portfolio Standards?: An Empirical Investigation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 133-158.
    4. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 38(2), pages 112-134.
    5. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    6. Menz, Fredric C. & Vachon, Stephan, 2006. "The effectiveness of different policy regimes for promoting wind power: Experiences from the states," Energy Policy, Elsevier, vol. 34(14), pages 1786-1796, September.
    7. Carley, Sanya, 2009. "State renewable energy electricity policies: An empirical evaluation of effectiveness," Energy Policy, Elsevier, vol. 37(8), pages 3071-3081, August.
    8. Marques, António C. & Fuinhas, José A. & Pires Manso, J.R., 2010. "Motivations driving renewable energy in European countries: A panel data approach," Energy Policy, Elsevier, vol. 38(11), pages 6877-6885, November.
    9. Shrimali, Gireesh & Kniefel, Joshua, 2011. "Are government policies effective in promoting deployment of renewable electricity resources?," Energy Policy, Elsevier, vol. 39(9), pages 4726-4741, September.
    10. Lori Snyder Bennear, 2007. "Are management-based regulations effective? Evidence from state pollution prevention programs," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 26(2), pages 327-348.
    11. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2011. "Synth: An R Package for Synthetic Control Methods in Comparative Case Studies," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i13).
    12. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    13. Dong, C.G., 2012. "Feed-in tariff vs. renewable portfolio standard: An empirical test of their relative effectiveness in promoting wind capacity development," Energy Policy, Elsevier, vol. 42(C), pages 476-485.
    14. Salim, Ruhul A. & Rafiq, Shuddhasattwa, 2012. "Why do some emerging economies proactively accelerate the adoption of renewable energy?," Energy Economics, Elsevier, vol. 34(4), pages 1051-1057.
    15. Alagappan, L. & Orans, R. & Woo, C.K., 2011. "What drives renewable energy development?," Energy Policy, Elsevier, vol. 39(9), pages 5099-5104, September.
    16. Delmas, Magali A. & Montes-Sancho, Maria J., 2011. "U.S. state policies for renewable energy: Context and effectiveness," Energy Policy, Elsevier, vol. 39(5), pages 2273-2288, May.
    17. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:aen:journl:ej38-3-bowen is not listed on IDEAS
    2. Shrimali, Gireesh & Lynes, Melissa & Indvik, Joe, 2015. "Wind energy deployment in the U.S.: An empirical analysis of the role of federal and state policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 796-806.
    3. Go, Roderick S. & Munoz, Francisco D. & Watson, Jean-Paul, 2016. "Assessing the economic value of co-optimized grid-scale energy storage investments in supporting high renewable portfolio standards," Applied Energy, Elsevier, vol. 183(C), pages 902-913.
    4. Guillaume Bourgeois & Sandrine Mathy & Philippe Menanteau, 2017. "The effect of climate policies on renewable energies : a review of econometric studies
      [L’effet des politiques climatiques sur les énergies renouvelables : une revue des études économétriques]
      ," Post-Print hal-01585906, HAL.
    5. Alden Griffith & Monica Higgins & James Turner, 2014. "A rooftop revolution? A multidisciplinary analysis of state-level residential solar programs in New Jersey and Massachusetts," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(2), pages 163-171, June.
    6. Fell, Harrison & Linn, Joshua & Munnings, Clayton, 2012. "Designing Renewable Electricity Policies to Reduce Emissions," Discussion Papers dp-12-54, Resources For the Future.
    7. Basher, Syed Abul & Masini, Andrea & Aflaki, Sam, 2015. "Time series properties of the renewable energy diffusion process: Implications for energy policy design and assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1680-1692.
    8. Eric Bowen & Donald J. Lacombe, 2015. "Spatial interaction of Renewable Portfolio Standards and their effect on renewable generation within NERC regions," Working Papers 15-03, Department of Economics, West Virginia University.

    More about this item

    Keywords

    Renewable energy; Renewable portfolio standards; Panel data models; Matching analysis;

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1258. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bibliothek). General contact details of provider: http://edirc.repec.org/data/diwbede.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.