IDEAS home Printed from
   My bibliography  Save this paper

Designing Renewable Electricity Policies to Reduce Emissions


  • Fell, Harrison
  • Linn, Joshua

    () (Resources for the Future)

  • Munnings, Clayton

    () (Resources for the Future)


A variety of renewable electricity policies to promote investment in wind, solar, and other types of renewable generators exist across the United States. The federal renewable energy investment tax credit, the federal renewable energy production tax credit, and state renewable portfolio standards are among the most notable. Whether the benefits of promoting new technology and reducing pollution emissions from the power sector justify these policies’ costs has been the subject of considerable debate. We argue in this paper that the debate is misguided because it does not consider two important interactions between renewable electricity generators and the rest of the power system. First, the value of electricity from a renewable generators depends on the generation and investment it displaces. Second, a large increase in renewable generation can reduce electricity prices, increasing consumption and emissions from fossil generators, and offsetting some of the environmental benefits of the policies. Two policy conclusions follow. First, existing renewable electricity policies can be redesigned to promote investment in the highest-value generators, which can greatly reduce the cost of achieving a given emissions reduction. Second, subsidies financed out of general tax revenue reduce emissions less than subsidies financed by charges to electricity consumers.

Suggested Citation

  • Fell, Harrison & Linn, Joshua & Munnings, Clayton, 2012. "Designing Renewable Electricity Policies to Reduce Emissions," Discussion Papers dp-12-54, Resources For the Future.
  • Handle: RePEc:rff:dpaper:dp-12-54

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Goulder, Lawrence H. & Parry, Ian W. H. & Williams III, Roberton C. & Burtraw, Dallas, 1999. "The cost-effectiveness of alternative instruments for environmental protection in a second-best setting," Journal of Public Economics, Elsevier, vol. 72(3), pages 329-360, June.
    2. Gireesh Shrimali & Steffen Jenner & Felix Groba & Gabriel Chan & Joe Indvik, 2012. "Have State Renewable Portfolio Standards Really Worked?: Synthesizing Past Policy Assessments," Discussion Papers of DIW Berlin 1258, DIW Berlin, German Institute for Economic Research.
    3. Kevin Novan, 2015. "Valuing the Wind: Renewable Energy Policies and Air Pollution Avoided," American Economic Journal: Economic Policy, American Economic Association, vol. 7(3), pages 291-326, August.
    4. Brown, Jason P. & Pender, John & Wiser, Ryan & Lantz, Eric & Hoen, Ben, 2012. "Ex post analysis of economic impacts from wind power development in U.S. counties," Energy Economics, Elsevier, vol. 34(6), pages 1743-1754.
    5. Fell, Harrison & Linn, Joshua, 2013. "Renewable electricity policies, heterogeneity, and cost effectiveness," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 688-707.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Eryilmaz, Derya & Homans, Frances, 2013. "Uncertainty in Renewable Energy Policy: How do Renewable Energy Credit markets and Production Tax Credits affect decisions to invest in renewable energy?," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150018, Agricultural and Applied Economics Association.

    More about this item


    renewable portfolio standard; production tax credit; investment tax credit; feed-in tariff; clean energy standard; cost-effectiveness; intermittency; wind energy; solar energy;

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-12-54. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.