IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3036-d370493.html
   My bibliography  Save this article

Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies

Author

Listed:
  • Carlos de Castro

    () (Research Group on Energy, Economy and System Dynamics, Escuela de Ingenierías Industriales, University of Valladolid, Paseo del Cauce s/n, 47011 Valladolid, Spain
    Department of Applied Physics, Escuela de Arquitectura, University of Valladolid, Av Salamanca, 18, 47014 Valladolid, Spain)

  • Iñigo Capellán-Pérez

    () (Research Group on Energy, Economy and System Dynamics, Escuela de Ingenierías Industriales, University of Valladolid, Paseo del Cauce s/n, 47011 Valladolid, Spain)

Abstract

Whether renewable energy sources (RES) will provide sufficient energy surplus to entirely power complex modern societies is under discussion. We contribute to this debate by estimating the current global average energy return on energy invested (EROI) for the five RES technologies with the highest potential of electricity generation from the comprehensive and internally consistent estimations of their material requirements at three distinct energy system boundaries: standard farm-gate (EROI st ), final at consumer point-of-use (EROI final ), and extended (including indirect investments, EROI ext ). EROI st levels found fall within the respective literature ranges. Expanding the boundaries closer to the system level, we find that only large hydroelectricity would currently have a high EROI ext ~ 6.5:1, while the rest of variable RES would be below 3:1: onshore wind (2.9:1), offshore wind (2.3:1), solar Photovoltaic (PV) (1.8:1), and solar Concentrated Solar Power (CSP) (<1:1). These results indicate that, very likely, the global average EROI ext levels of variable RES are currently below those of fossil fuel-fired electricity. It remains unknown if technological improvements will be able to compensate for factors, which will become increasingly important as the variable RES scale-up. Hence, without dynamically accounting for the evolution of the EROI of the system, the viability of sustainable energy systems cannot be ensured, especially for modern societies pursuing continuous economic growth.

Suggested Citation

  • Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, Open Access Journal, vol. 13(12), pages 1-1, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3036-:d:370493
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3036/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3036/
    Download Restriction: no

    References listed on IDEAS

    as
    1. Charles A. S. Hall & Stephen Balogh & David J.R. Murphy, 2009. "What is the Minimum EROI that a Sustainable Society Must Have?," Energies, MDPI, Open Access Journal, vol. 2(1), pages 1-23, January.
    2. Ferroni, Ferruccio & Hopkirk, Robert J., 2016. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation," Energy Policy, Elsevier, vol. 94(C), pages 336-344.
    3. Ferroni, Ferruccio & Guekos, Alexandros & Hopkirk, Robert J., 2017. "Further considerations to: Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation," Energy Policy, Elsevier, vol. 107(C), pages 498-505.
    4. Bhandari, Khagendra P. & Collier, Jennifer M. & Ellingson, Randy J. & Apul, Defne S., 2015. "Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 133-141.
    5. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    6. Federico Demaria & Francois Schneider & Filka Sekulova & Joan Martinez-Alier, 2013. "What is Degrowth? From an Activist Slogan to a Social Movement," Environmental Values, White Horse Press, vol. 22(2), pages 191-215, April.
    7. Reynolds, Douglas B., 1999. "The mineral economy: how prices and costs can falsely signal decreasing scarcity," Ecological Economics, Elsevier, vol. 31(1), pages 155-166, October.
    8. Fizaine, Florian & Court, Victor, 2016. "Energy expenditure, economic growth, and the minimum EROI of society," Energy Policy, Elsevier, vol. 95(C), pages 172-186.
    9. Trainer, Ted, 2010. "Can renewables etc. solve the greenhouse problem? The negative case," Energy Policy, Elsevier, vol. 38(8), pages 4107-4114, August.
    10. Moriarty, Patrick & Honnery, Damon, 2016. "Can renewable energy power the future?," Energy Policy, Elsevier, vol. 93(C), pages 3-7.
    11. Harmsen, J.H.M. & Roes, A.L. & Patel, M.K., 2013. "The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios," Energy, Elsevier, vol. 50(C), pages 62-73.
    12. Boccard, Nicolas, 2009. "Capacity factor of wind power realized values vs. estimates," Energy Policy, Elsevier, vol. 37(7), pages 2679-2688, July.
    13. Dale, M. & Krumdieck, S. & Bodger, P., 2012. "Global energy modelling — A biophysical approach (GEMBA) Part 2: Methodology," Ecological Economics, Elsevier, vol. 73(C), pages 158-167.
    14. Trainer, Ted, 2018. "Estimating the EROI of whole systems for 100% renewable electricity supply capable of dealing with intermittency," Energy Policy, Elsevier, vol. 119(C), pages 648-653.
    15. Nathan Gagnon & Charles A.S. Hall & Lysle Brinker, 2009. "A Preliminary Investigation of Energy Return on Energy Investment for Global Oil and Gas Production," Energies, MDPI, Open Access Journal, vol. 2(3), pages 1-14, July.
    16. de Castro, Carlos & Mediavilla, Margarita & Miguel, Luis Javier & Frechoso, Fernando, 2013. "Global solar electric potential: A review of their technical and sustainable limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 824-835.
    17. Tokimatsu, Koji & Wachtmeister, Henrik & McLellan, Benjamin & Davidsson, Simon & Murakami, Shinsuke & Höök, Mikael & Yasuoka, Rieko & Nishio, Masahiro, 2017. "Energy modeling approach to the global energy-mineral nexus: A first look at metal requirements and the 2°C target," Applied Energy, Elsevier, vol. 207(C), pages 494-509.
    18. Lambert, Jessica G. & Hall, Charles A.S. & Balogh, Stephen & Gupta, Ajay & Arnold, Michelle, 2014. "Energy, EROI and quality of life," Energy Policy, Elsevier, vol. 64(C), pages 153-167.
    19. Lindsay Price & Alissa Kendall, 2012. "Wind Power as a Case Study," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 22-27, April.
    20. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2020. "Global available solar energy under physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 257(C).
    21. Kubiszewski, Ida & Cleveland, Cutler J. & Endres, Peter K., 2010. "Meta-analysis of net energy return for wind power systems," Renewable Energy, Elsevier, vol. 35(1), pages 218-225.
    22. Trainer, Ted, 2013. "Can Europe run on renewable energy? A negative case," Energy Policy, Elsevier, vol. 63(C), pages 845-850.
    23. Capellán-Pérez, Iñigo & de Castro, Carlos & Arto, Iñaki, 2017. "Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 760-782.
    24. Raugei, Marco & Leccisi, Enrica, 2016. "A comprehensive assessment of the energy performance of the full range of electricity generation technologies deployed in the United Kingdom," Energy Policy, Elsevier, vol. 90(C), pages 46-59.
    25. Pillai, Unni, 2015. "Drivers of cost reduction in solar photovoltaics," Energy Economics, Elsevier, vol. 50(C), pages 286-293.
    26. Norgaard, Richard B., 1990. "Economic indicators of resource scarcity: A critical essay," Journal of Environmental Economics and Management, Elsevier, vol. 19(1), pages 19-25, July.
    27. Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
    28. David J. Murphy & Michael Carbajales-Dale & Devin Moeller, 2016. "Comparing Apples to Apples: Why the Net Energy Analysis Community Needs to Adopt the Life-Cycle Analysis Framework," Energies, MDPI, Open Access Journal, vol. 9(11), pages 1-1, November.
    29. Weißbach, D. & Ruprecht, G. & Huke, A. & Czerski, K. & Gottlieb, S. & Hussein, A., 2013. "Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants," Energy, Elsevier, vol. 52(C), pages 210-221.
    30. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    31. Hall, Charles A.S. & Lambert, Jessica G. & Balogh, Stephen B., 2014. "EROI of different fuels and the implications for society," Energy Policy, Elsevier, vol. 64(C), pages 141-152.
    32. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    33. Koppelaar, R.H.E.M., 2017. "Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1241-1255.
    34. García-Olivares, Antonio & Ballabrera-Poy, Joaquim & García-Ladona, Emili & Turiel, Antonio, 2012. "A global renewable mix with proven technologies and common materials," Energy Policy, Elsevier, vol. 41(C), pages 561-574.
    35. Dale, M. & Krumdieck, S. & Bodger, P., 2012. "Global energy modelling — A biophysical approach (GEMBA) part 1: An overview of biophysical economics," Ecological Economics, Elsevier, vol. 73(C), pages 152-157.
    36. de Castro, Carlos & Carpintero, Óscar & Frechoso, Fernando & Mediavilla, Margarita & de Miguel, Luis J., 2014. "A top-down approach to assess physical and ecological limits of biofuels," Energy, Elsevier, vol. 64(C), pages 506-512.
    37. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    38. Michael Dale & Susan Krumdieck & Pat Bodger, 2011. "A Dynamic Function for Energy Return on Investment," Sustainability, MDPI, Open Access Journal, vol. 3(10), pages 1-14, October.
    39. Trainer, Ted, 2017. "Some problems in storing renewable energy," Energy Policy, Elsevier, vol. 110(C), pages 386-393.
    40. Raugei, Marco & Sgouridis, Sgouris & Murphy, David & Fthenakis, Vasilis & Frischknecht, Rolf & Breyer, Christian & Bardi, Ugo & Barnhart, Charles & Buckley, Alastair & Carbajales-Dale, Michael & Csala, 2017. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response," Energy Policy, Elsevier, vol. 102(C), pages 377-384.
    41. Heun, Matthew Kuperus & de Wit, Martin, 2012. "Energy return on (energy) invested (EROI), oil prices, and energy transitions," Energy Policy, Elsevier, vol. 40(C), pages 147-158.
    42. David J. Murphy & Charles A.S. Hall & Michael Dale & Cutler Cleveland, 2011. "Order from Chaos: A Preliminary Protocol for Determining the EROI of Fuels," Sustainability, MDPI, Open Access Journal, vol. 3(10), pages 1-20, October.
    43. Pihl, Erik & Kushnir, Duncan & Sandén, Björn & Johnsson, Filip, 2012. "Material constraints for concentrating solar thermal power," Energy, Elsevier, vol. 44(1), pages 944-954.
    44. Kis, Zoltán & Pandya, Nikul & Koppelaar, Rembrandt H.E.M., 2018. "Electricity generation technologies: Comparison of materials use, energy return on investment, jobs creation and CO2 emissions reduction," Energy Policy, Elsevier, vol. 120(C), pages 144-157.
    45. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, Open Access Journal, vol. 10(4), pages 1-1, April.
    46. Moriarty, Patrick & Honnery, Damon, 2019. "Ecosystem maintenance energy and the need for a green EROI," Energy Policy, Elsevier, vol. 131(C), pages 229-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrick Moriarty & Damon Honnery, 2020. "Feasibility of a 100% Global Renewable Energy System," Energies, MDPI, Open Access Journal, vol. 13(21), pages 1-1, October.
    2. Anshuman Chaube & Andrew Chapman & Yosuke Shigetomi & Kathryn Huff & James Stubbins, 2020. "The Role of Hydrogen in Achieving Long Term Japanese Energy System Goals," Energies, MDPI, Open Access Journal, vol. 13(17), pages 1-1, September.

    More about this item

    Keywords

    EROI; transition to renewables; wind; solar; large hydropower;

    JEL classification:

    • Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q49 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3036-:d:370493. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.