IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v35y2010i2p98-115.html
   My bibliography  Save this article

The Environmental sustainability of mining in Australia: key mega-trends and looming constraints

Author

Listed:
  • Mudd, Gavin M.

Abstract

At first 'sustainable mining' could be perceived as a paradox--minerals are widely held to be finite resources with rising consumption causing pressure on known resources. The true sustainability of mineral resources, however, is a much more complex picture and involves exploration, technology, economics, social and environmental issues, and advancing scientific knowledge--predicting future sustainability is therefore not a simple task. This paper presents the results from a landmark study on historical trends in Australian mining, including ore milled, ore grades, open cut versus underground mining, overburden/waste rock and economic resources. When complete data sets are compiled for specific metals, particular issues stand out with respect to sustainability--technological breakthroughs (e.g. flotation, carbon-in-pulp), new discoveries (e.g. uranium or U), price changes (e.g. Au, boom/bust cycles), social issues (e.g. strikes), etc. All of these issues are of prime importance in moving towards a semi-quantitative sustainability model of mineral resources and the mining industry. For the future, critical issues will continue to be declining ore grades (also ore quality and impurities), increased waste rock and associated liabilities, known economic resources, potential breakthrough technologies, and broader environmental constraints (e.g. carbon costs, water). For this latter area, many companies now report annually on sustainability performance--facilitating analysis of environmental sustainability with respect to production performance. By linking these two commonly disparate aspects--mining production and environmental/sustainability data--it becomes possible to better understand environmental sustainability and predict future constraints such as water requirements, greenhouse emissions, energy and reagent inputs, and the like. This paper will therefore present a range of fundamental data and issues which help towards quantifying the resource and environmental sustainability of mining--with critical implications for the mining industry and society as a whole.

Suggested Citation

  • Mudd, Gavin M., 2010. "The Environmental sustainability of mining in Australia: key mega-trends and looming constraints," Resources Policy, Elsevier, vol. 35(2), pages 98-115, June.
  • Handle: RePEc:eee:jrpoli:v:35:y:2010:i:2:p:98-115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4207(09)00053-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cowell, Sarah J. & Wehrmeyer, Walter & Argust, Peter W. & Robertson, J. Graham S., 1999. "Sustainability and the primary extraction industries: theories and practice," Resources Policy, Elsevier, vol. 25(4), pages 277-286, December.
    2. Kittiya Yongvanich & James Guthrie, 2005. "Extended performance reporting: an examination of the Australian mining industry," Accounting Forum, Taylor & Francis Journals, vol. 29(1), pages 103-119, March.
    3. Garcia, Patricio & Knights, Peter F. & Tilton, John E., 2001. "Labor productivity and comparative advantage in mining:: the copper industry in Chile," Resources Policy, Elsevier, vol. 27(2), pages 97-105, June.
    4. Mudd, Gavin M., 2007. "Global trends in gold mining: Towards quantifying environmental and resource sustainability," Resources Policy, Elsevier, vol. 32(1-2), pages 42-56.
    5. Fthenakis, Vasilis & Wang, Wenming & Kim, Hyung Chul, 2009. "Life cycle inventory analysis of the production of metals used in photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 493-517, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zanellato Gianluca, 2021. "Quality of Information Disclosed in Integrated Reports, in the Extracting Sector: Insights from Europe," Studia Universitatis Babeș-Bolyai Oeconomica, Sciendo, vol. 66(3), pages 1-20, December.
    2. Alberto Fonseca, 2010. "How credible are mining corporations' sustainability reports? a critical analysis of external assurance under the requirements of the international council on mining and metals," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 17(6), pages 355-370, November.
    3. Henning Wigger & Till Zimmermann & Christian Pade, 2015. "Broadening our view on nanomaterials: highlighting potentials to contribute to a sustainable materials management in preliminary assessments," Environment Systems and Decisions, Springer, vol. 35(1), pages 110-128, March.
    4. Adomako, Samuel & Tran, Mai Dong, 2022. "Sustainable environmental strategy, firm competitiveness, and financial performance: Evidence from the mining industry," Resources Policy, Elsevier, vol. 75(C).
    5. Vela-Almeida, Diana & Brooks, Grace & Kosoy, Nicolas, 2015. "Setting the limits to extraction: A biophysical approach to mining activities," Ecological Economics, Elsevier, vol. 119(C), pages 189-196.
    6. Krausmann, Fridolin & Gingrich, Simone & Eisenmenger, Nina & Erb, Karl-Heinz & Haberl, Helmut & Fischer-Kowalski, Marina, 2009. "Growth in global materials use, GDP and population during the 20th century," Ecological Economics, Elsevier, vol. 68(10), pages 2696-2705, August.
    7. Van Alstine, James & Barkemeyer, Ralf, 2014. "Business and development: Changing discourses in the extractive industries," Resources Policy, Elsevier, vol. 40(C), pages 4-16.
    8. Filippo Vitolla & Nicola Raimo & Michele Rubino & Antonello Garzoni, 2019. "How pressure from stakeholders affects integrated reporting quality," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 26(6), pages 1591-1606, November.
    9. Guiomar Calvo & Gavin Mudd & Alicia Valero & Antonio Valero, 2016. "Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality?," Resources, MDPI, vol. 5(4), pages 1-14, November.
    10. Ki‐Hoon Lee, 2017. "Does Size Matter? Evaluating Corporate Environmental Disclosure in the Australian Mining and Metal Industry: A Combined Approach of Quantity and Quality Measurement," Business Strategy and the Environment, Wiley Blackwell, vol. 26(2), pages 209-223, February.
    11. Devenin, Verónica, 2021. "Collaborative community development in mining regions: The Calama Plus and Creo Antofagasta programs in Chile," Resources Policy, Elsevier, vol. 70(C).
    12. Simeon D. Alder, 2016. "In the Wrong Hands: Complementarities, Resource Allocation, and TFP," American Economic Journal: Macroeconomics, American Economic Association, vol. 8(1), pages 199-241, January.
    13. Pothen, Frank, 2013. "The metal resources (METRO) model: A dynamic partial equilibrium model for metal markets applied to rare earth elements," ZEW Discussion Papers 13-112, ZEW - Leibniz Centre for European Economic Research.
    14. Leena Grandell & Mikael Höök, 2015. "Assessing Rare Metal Availability Challenges for Solar Energy Technologies," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
    15. Vintró, Carla & Fortuny, Jordi & Sanmiquel, Lluís & Freijo, Modesto & Edo, Joaquín, 2012. "Is corporate social responsibility possible in the mining sector? Evidence from Catalan companies," Resources Policy, Elsevier, vol. 37(1), pages 118-125.
    16. Ortwin Renn & Ilan Chabay & Sander van der Leeuw & Solène Droy, 2020. "Beyond the Indicators: Improving Science, Scholarship, Policy and Practice to Meet the Complex Challenges of Sustainability," Sustainability, MDPI, vol. 12(2), pages 1-6, January.
    17. Swart, Pilar & Dewulf, Jo, 2013. "Quantifying the impacts of primary metal resource use in life cycle assessment based on recent mining data," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 180-187.
    18. Cristian Delgado & Nicolás Garrido, 2012. "Contabilidad del crecimiento en las regiones de Chile 1987-2009," Documentos de Trabajo en Economia y Ciencia Regional 23, Universidad Catolica del Norte, Chile, Department of Economics, revised May 2012.
    19. Petra F. A. Dilling, 2016. "Reporting on Long-Term Value Creation—The Example of Public Canadian Energy and Mining Companies," Sustainability, MDPI, vol. 8(9), pages 1-26, September.
    20. van Berkel, Rene, 2007. "Eco-efficiency in primary metals production: Context, perspectives and methods," Resources, Conservation & Recycling, Elsevier, vol. 51(3), pages 511-540.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:35:y:2010:i:2:p:98-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.