IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v5y2016i4p36-d82270.html
   My bibliography  Save this article

Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality?

Author

Listed:
  • Guiomar Calvo

    (Research Centre for Energy Resources and Consumption (CIRCE)—Universidad de Zaragoza, CIRCE Building—Campus Río Ebro, Mariano Esquillor Gómez, 15, 50018 Zaragoza, Spain)

  • Gavin Mudd

    (Environmental Engineering, Department of Civil Engineering, Monash University, Wellington Rd, Clayton VIC 3800, Australia)

  • Alicia Valero

    (Research Centre for Energy Resources and Consumption (CIRCE)—Universidad de Zaragoza, CIRCE Building—Campus Río Ebro, Mariano Esquillor Gómez, 15, 50018 Zaragoza, Spain)

  • Antonio Valero

    (Research Centre for Energy Resources and Consumption (CIRCE)—Universidad de Zaragoza, CIRCE Building—Campus Río Ebro, Mariano Esquillor Gómez, 15, 50018 Zaragoza, Spain)

Abstract

Mining industry requires high amounts of energy to extract and process resources, including a variety of concentration and refining processes. Using energy consumption information, different sustainability issues can be addressed, such as the relationship with ore grade over the years, energy variations in electricity or fossil fuel use. A rigorous analysis and understanding of the energy intensity use in mining is the first step towards a more sustainable mining industry and, globally, better resource management. Numerous studies have focused on the energy consumption of mining projects, with analysis carried out primarily in one single country or one single region. This paper quantifies, on a global level, the relationship between ore grade and energy intensity. With the case of copper, the study has shown that the average copper ore grade is decreasing over time, while the energy consumption and the total material production in the mine increases. Analyzing only copper mines, the average ore grade has decreased approximately by 25% in just ten years. In that same period, the total energy consumption has increased at a higher rate than production (46% energy increase over 30% production increase).

Suggested Citation

  • Guiomar Calvo & Gavin Mudd & Alicia Valero & Antonio Valero, 2016. "Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality?," Resources, MDPI, vol. 5(4), pages 1-14, November.
  • Handle: RePEc:gam:jresou:v:5:y:2016:i:4:p:36-:d:82270
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/5/4/36/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/5/4/36/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James West, 2011. "Decreasing Metal Ore Grades," Journal of Industrial Ecology, Yale University, vol. 15(2), pages 165-168, April.
    2. Valero, Al. & Valero, A., 2011. "A prediction of the exergy loss of the world's mineral reserves in the 21st century," Energy, Elsevier, vol. 36(4), pages 1848-1854.
    3. Lawrence D. Meinert & Gilpin R. Robinson & Nedal T. Nassar, 2016. "Mineral Resources: Reserves, Peak Production and the Future," Resources, MDPI, vol. 5(1), pages 1-14, February.
    4. Krausmann, Fridolin & Gingrich, Simone & Eisenmenger, Nina & Erb, Karl-Heinz & Haberl, Helmut & Fischer-Kowalski, Marina, 2009. "Growth in global materials use, GDP and population during the 20th century," Ecological Economics, Elsevier, vol. 68(10), pages 2696-2705, August.
    5. Mudd, Gavin M., 2007. "Global trends in gold mining: Towards quantifying environmental and resource sustainability," Resources Policy, Elsevier, vol. 32(1-2), pages 42-56.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marie K. Schellens & Johanna Gisladottir, 2018. "Critical Natural Resources: Challenging the Current Discourse and Proposal for a Holistic Definition," Resources, MDPI, vol. 7(4), pages 1-28, December.
    2. Larona S. Teseletso & Tsuyoshi Adachi, 2022. "Long-Term Sustainability of Copper and Iron Based on a System Dynamics Model," Resources, MDPI, vol. 11(4), pages 1-19, April.
    3. Nadine Rötzer & Mario Schmidt, 2020. "Historical, Current, and Future Energy Demand from Global Copper Production and Its Impact on Climate Change," Resources, MDPI, vol. 9(4), pages 1-31, April.
    4. Sören Lars Nungesser & Stefan Pauliuk, 2022. "Modelling Hazard for Tailings Dam Failures at Copper Mines in Global Supply Chains," Resources, MDPI, vol. 11(10), pages 1-27, October.
    5. Marc van der Meide & Carina Harpprecht & Stephen Northey & Yongxiang Yang & Bernhard Steubing, 2022. "Effects of the energy transition on environmental impacts of cobalt supply: A prospective life cycle assessment study on future supply of cobalt," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1631-1645, October.
    6. James McNeice & Harshit Mahandra & Ahmad Ghahreman, 2022. "Biogenic Production of Thiosulfate from Organic and Inorganic Sulfur Substrates for Application to Gold Leaching," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    7. Patrick Moriarty & Damon Honnery, 2020. "New Approaches for Ecological and Social Sustainability in a Post-Pandemic World," World, MDPI, vol. 1(3), pages 1-14, October.
    8. Eirik Nøst Nedkvitne & Dag Øistein Eriksen & Jon Petter Omtvedt, 2023. "Grade and Tonnage Comparison of Anthropogenic Raw Materials and Ores for Cu, Zn, and Pb Recovery," Resources, MDPI, vol. 12(3), pages 1-9, February.
    9. Valentin Goldberg & Ali Dashti & Robert Egert & Binil Benny & Thomas Kohl & Fabian Nitschke, 2023. "Challenges and Opportunities for Lithium Extraction from Geothermal Systems in Germany—Part 3: The Return of the Extraction Brine," Energies, MDPI, vol. 16(16), pages 1-21, August.
    10. Nadine Rötzer & Mario Schmidt, 2018. "Decreasing Metal Ore Grades—Is the Fear of Resource Depletion Justified?," Resources, MDPI, vol. 7(4), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Larona S. Teseletso & Tsuyoshi Adachi, 2023. "Future availability of mineral resources: ultimate reserves and total material requirement," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(2), pages 189-206, June.
    2. Domínguez, Adriana & Czarnowska, Lucyna & Valero, Alicia & Stanek, Wojciech & Valero, Antonio, 2014. "Thermo-ecological and exergy replacement costs of nickel processing," Energy, Elsevier, vol. 72(C), pages 103-114.
    3. Guiomar Calvo & Alicia Valero & Luis Gabriel Carmona & Kai Whiting, 2015. "Physical Assessment of the Mineral Capital of a Nation: The Case of an Importing and an Exporting Country," Resources, MDPI, vol. 4(4), pages 1-14, November.
    4. Michael Priester & Magnus Ericsson & Peter Dolega & Olof Löf, 2019. "Mineral grades: an important indicator for environmental impact of mineral exploitation," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 32(1), pages 49-73, April.
    5. George C. Efthimiou & Panos Kalimeris & Spyros Andronopoulos & John G. Bartzis, 2018. "Statistical Projection of Material Intensity: Evidence from the Global Economy and 107 Countries," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1465-1472, December.
    6. Valero, Antonio & Agudelo, Andrés & Valero, Alicia, 2011. "The crepuscular planet. A model for the exhausted atmosphere and hydrosphere," Energy, Elsevier, vol. 36(6), pages 3745-3753.
    7. Rode, Julian & Le Menestrel, Marc & Cornelissen, Gert, 2017. "Ecosystem Service Arguments Enhance Public Support for Environmental Protection - But Beware of the Numbers!," Ecological Economics, Elsevier, vol. 141(C), pages 213-221.
    8. Larona S. Teseletso & Tsuyoshi Adachi, 2022. "Long-Term Sustainability of Copper and Iron Based on a System Dynamics Model," Resources, MDPI, vol. 11(4), pages 1-19, April.
    9. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    10. Ragnheiður Bogadóttir, 2020. "The Social Metabolism of Quiet Sustainability in the Faroe Islands," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    11. Marco Bianchi & Carlos Tapia & Ikerne del Valle, 2020. "Monitoring domestic material consumption at lower territorial levels: A novel data downscaling method," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1074-1087, October.
    12. Krausmann, Fridolin & Gingrich, Simone & Eisenmenger, Nina & Erb, Karl-Heinz & Haberl, Helmut & Fischer-Kowalski, Marina, 2009. "Growth in global materials use, GDP and population during the 20th century," Ecological Economics, Elsevier, vol. 68(10), pages 2696-2705, August.
    13. Zengzeng Fan & Yuanyang Wang & Yanchao Feng, 2021. "Ecological Livability Assessment of Urban Agglomerations in Guangdong-Hong Kong-Macao Greater Bay Area," IJERPH, MDPI, vol. 18(24), pages 1-16, December.
    14. Azimi, Mohammad Naim, 2016. "An economic growth model: Evaluating the interaction of market consumption with GDP growth rate in Afghanistan," MPRA Paper 69517, University Library of Munich, Germany, revised 11 Jan 2016.
    15. Kander, Astrid & Warde, Paul & Teives Henriques, Sofia & Nielsen, Hana & Kulionis, Viktoras & Hagen, Sven, 2017. "International Trade and Energy Intensity During European Industrialization, 1870–1935," Ecological Economics, Elsevier, vol. 139(C), pages 33-44.
    16. Magambo, Isaiah & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Environmental and Technical Efficiency in Large Gold Mines in Developing Countries," MPRA Paper 108068, University Library of Munich, Germany.
    17. Cordier, Mateo & Uehara, Takuro & Baztan, Juan & Jorgensen, Bethany & Yan, Huijie, 2021. "Plastic pollution and economic growth: The influence of corruption and lack of education," Ecological Economics, Elsevier, vol. 182(C).
    18. Brand-Correa, Lina I. & Steinberger, Julia K., 2017. "A Framework for Decoupling Human Need Satisfaction From Energy Use," Ecological Economics, Elsevier, vol. 141(C), pages 43-52.
    19. Wendler, Tobias & Töbelmann, Daniel & Günther, Jutta, 2021. "Natural resources and technology - on the mitigating effect of green tech," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242416, Verein für Socialpolitik / German Economic Association.
    20. Bert Scholtens & Riikka Sievänen, 2013. "Drivers of Socially Responsible Investing: A Case Study of Four Nordic Countries," Journal of Business Ethics, Springer, vol. 115(3), pages 605-616, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:5:y:2016:i:4:p:36-:d:82270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.