Non-renewable and renewable levelized exergy cost of electricity (LExCOE) with focus on its infrastructure: 1900–2050
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.133987
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Long, Huiling & Li, Xiaobing & Wang, Hong & Jia, Jingdun, 2013. "Biomass resources and their bioenergy potential estimation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 344-352.
- Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel, 2018. "Material bottlenecks in the future development of green technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 178-200.
- Olivier Vidal & Fatma Rostom & Cyril François & Gael Giraud, 2017. "Global Trends in Metal Consumption and Supply: The Raw Material–Energy Nexus," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03903919, HAL.
- Sousa, Tânia & Brockway, Paul E. & Cullen, Jonathan M. & Henriques, Sofia Teives & Miller, Jack & Serrenho, André Cabrera & Domingos, Tiago, 2017. "The Need for Robust, Consistent Methods in Societal Exergy Accounting," Ecological Economics, Elsevier, vol. 141(C), pages 11-21.
- Torrubia, Jorge & Valero, Alicia & Valero, Antonio, 2024. "Renewable exergy return on investment (RExROI) in energy systems. The case of silicon photovoltaic panels," Energy, Elsevier, vol. 304(C).
- Wang, Peng & Chen, Li-Yang & Ge, Jian-Ping & Cai, Wenjia & Chen, Wei-Qiang, 2019. "Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Javier Felipe-Andreu & Antonio Valero & Alicia Valero, 2022. "Territorial Inequalities, Ecological and Material Footprints of the Energy Transition: Case Study of the Cantabrian-Mediterranean Bioregion," Land, MDPI, vol. 11(11), pages 1-22, October.
- Igogo, Tsisilile & Awuah-Offei, Kwame & Newman, Alexandra & Lowder, Travis & Engel-Cox, Jill, 2021. "Integrating renewable energy into mining operations: Opportunities, challenges, and enabling approaches," Applied Energy, Elsevier, vol. 300(C).
- Olivier Vidal & Fatma Rostom & Cyril François & Gael Giraud, 2017. "Global Trends in Metal Consumption and Supply: The Raw Material–Energy Nexus," Post-Print hal-03903919, HAL.
- Hall, Charles A.S. & Lambert, Jessica G. & Balogh, Stephen B., 2014. "EROI of different fuels and the implications for society," Energy Policy, Elsevier, vol. 64(C), pages 141-152.
- Aljoša Slameršak & Giorgos Kallis & Daniel W. O’Neill, 2022. "Energy requirements and carbon emissions for a low-carbon energy transition," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Elshkaki, Ayman, 2019. "Material-energy-water-carbon nexus in China’s electricity generation system up to 2050," Energy, Elsevier, vol. 189(C).
- Valero, Alicia & Valero, Antonio, 2012. "What are the clean reserves of fossil fuels?," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 126-131.
- Ester Van der Voet & Lauran Van Oers & Miranda Verboon & Koen Kuipers, 2019. "Environmental Implications of Future Demand Scenarios for Metals: Methodology and Application to the Case of Seven Major Metals," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 141-155, February.
- Guiomar Calvo & Gavin Mudd & Alicia Valero & Antonio Valero, 2016. "Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality?," Resources, MDPI, vol. 5(4), pages 1-14, November.
- Silva Ortiz, Pablo & Flórez-Orrego, Daniel & de Oliveira Junior, Silvio & Maciel Filho, Rubens & Osseweijer, Patricia & Posada, John, 2020. "Unit exergy cost and specific CO2 emissions of the electricity generation in the Netherlands," Energy, Elsevier, vol. 208(C).
- Emmanuel Aramendia & Paul E. Brockway & Peter G. Taylor & Jonathan B. Norman & Matthew K. Heun & Zeke Marshall, 2024. "Estimation of useful-stage energy returns on investment for fossil fuels and implications for renewable energy systems," Nature Energy, Nature, vol. 9(7), pages 803-816, July.
- Michaja Pehl & Anders Arvesen & Florian Humpenöder & Alexander Popp & Edgar G. Hertwich & Gunnar Luderer, 2017. "Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling," Nature Energy, Nature, vol. 2(12), pages 939-945, December.
- Pinto, Ricardo & Henriques, Sofia T. & Brockway, Paul E. & Heun, Matthew Kuperus & Sousa, Tânia, 2023. "The rise and stall of world electricity efficiency:1900–2017, results and insights for the renewables transition," Energy, Elsevier, vol. 269(C).
- Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel & Ascaso, Sonia & Palacios, Jose-Luis, 2018. "Global material requirements for the energy transition. An exergy flow analysis of decarbonisation pathways," Energy, Elsevier, vol. 159(C), pages 1175-1184.
- Valero, Alicia & Valero, Antonio & Stanek, Wojciech, 2018. "Assessing the exergy degradation of the natural capital: From Szargut's updated reference environment to the new thermoecological-cost methodology," Energy, Elsevier, vol. 163(C), pages 1140-1149.
- Font de Mora, Emilio & Torres, César & Valero, Antonio, 2012. "Assessment of biodiesel energy sustainability using the exergy return on investment concept," Energy, Elsevier, vol. 45(1), pages 474-480.
- Diesendorf, M. & Wiedmann, T., 2020. "Implications of Trends in Energy Return on Energy Invested (EROI) for Transitioning to Renewable Electricity," Ecological Economics, Elsevier, vol. 176(C).
- Koppelaar, R.H.E.M., 2017. "Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1241-1255.
- García-Olivares, Antonio & Ballabrera-Poy, Joaquim & García-Ladona, Emili & Turiel, Antonio, 2012. "A global renewable mix with proven technologies and common materials," Energy Policy, Elsevier, vol. 41(C), pages 561-574.
- Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
- Aramendia, Emmanuel & Brockway, Paul E. & Taylor, Peter G. & Norman, Jonathan B., 2024. "Exploring the effects of mineral depletion on renewable energy technologies net energy returns," Energy, Elsevier, vol. 290(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Torrubia, Jorge & Valero, Alicia & Valero, Antonio, 2024. "Renewable exergy return on investment (RExROI) in energy systems. The case of silicon photovoltaic panels," Energy, Elsevier, vol. 304(C).
- Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Aramendia, Emmanuel & Brockway, Paul E. & Taylor, Peter G. & Norman, Jonathan B., 2024. "Exploring the effects of mineral depletion on renewable energy technologies net energy returns," Energy, Elsevier, vol. 290(C).
- Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
- Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022.
"Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data,"
Applied Energy, Elsevier, vol. 326(C).
- Hugo Le Boulzec & Louis Delannoy & Baptiste Andrieu & François Verzier & Olivier Vidal & Sandrine Mathy, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Post-Print hal-03780879, HAL.
- Teixeira, Bernardo & Brito, Miguel Centeno & Mateus, António, 2024. "Raw materials for the Portuguese decarbonization roadmap: The case of solar photovoltaics and wind energy," Resources Policy, Elsevier, vol. 90(C).
- Hache, Emmanuel & Simoën, Marine & Seck, Gondia Sokhna & Bonnet, Clément & Jabberi, Aymen & Carcanague, Samuel, 2020.
"The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios,"
International Economics, Elsevier, vol. 163(C), pages 114-133.
- Emmanuel Hache & Marine Simoën & Gondia Sokhna Seck & Clément Bonnet & Aymen Jabberi, 2020. "The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios," International Economics, CEPII research center, issue 163, pages 114-133.
- Emmanuel Hache & Marine Simoën & Gondia Sokhna Seck & Clement Bonnet & Aymen Jabberi & Samuel Carcanague, 2020. "The impact of future power generation on cement demand: an international and regional assessment based on climate scenarios," Post-Print hal-02978242, HAL.
- Ozawa, Akito & Morimoto, Shinichirou & Hatayama, Hiroki & Anzai, Yurie, 2023. "Energy–materials nexus of electrified vehicle penetration in Japan: A study on energy transition and cobalt flow," Energy, Elsevier, vol. 277(C).
- Solomon, A.A. & Sahin, Hasret & Breyer, Christian, 2024. "The pitfall in designing future electrical power systems without considering energy return on investment in planning," Applied Energy, Elsevier, vol. 369(C).
- Elshkaki, Ayman, 2020. "Long-term analysis of critical materials in future vehicles electrification in China and their national and global implications," Energy, Elsevier, vol. 202(C).
- Ren, Kaipeng & Tang, Xu & Höök, Mikael, 2021. "Evaluating metal constraints for photovoltaics: Perspectives from China’s PV development," Applied Energy, Elsevier, vol. 282(PA).
- Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
- Aljoša Slameršak & Giorgos Kallis & Daniel W. O’Neill, 2022. "Energy requirements and carbon emissions for a low-carbon energy transition," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Černý, Martin & Bruckner, Martin & Weinzettel, Jan & Wiebe, Kirsten & Kimmich, Christian & Kerschner, Christian & Hubacek, Klaus, 2024. "Global employment and skill level requirements for ‘Post-Carbon Europe’," Ecological Economics, Elsevier, vol. 216(C).
- Emmanuel Aramendia & Paul E. Brockway & Peter G. Taylor & Jonathan B. Norman & Matthew K. Heun & Zeke Marshall, 2024. "Estimation of useful-stage energy returns on investment for fossil fuels and implications for renewable energy systems," Nature Energy, Nature, vol. 9(7), pages 803-816, July.
- Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Javier Felipe-Andreu & Antonio Valero & Alicia Valero, 2022. "Territorial Inequalities, Ecological and Material Footprints of the Energy Transition: Case Study of the Cantabrian-Mediterranean Bioregion," Land, MDPI, vol. 11(11), pages 1-22, October.
- Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023.
"Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model,"
Ecological Economics, Elsevier, vol. 209(C).
- Pierre Jacques & Louis Delannoy & Baptiste Andrieu & Devrim Yilmaz & Hervé Jeanmart & Antoine Godin, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Post-Print hal-04087628, HAL.
- Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
- Kis, Zoltán & Pandya, Nikul & Koppelaar, Rembrandt H.E.M., 2018. "Electricity generation technologies: Comparison of materials use, energy return on investment, jobs creation and CO2 emissions reduction," Energy Policy, Elsevier, vol. 120(C), pages 144-157.
More about this item
Keywords
Exergy; Electricity cost; Material intensity; Renewable energies; Energy transition;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037654. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.