IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i11p1891-d952428.html
   My bibliography  Save this article

Territorial Inequalities, Ecological and Material Footprints of the Energy Transition: Case Study of the Cantabrian-Mediterranean Bioregion

Author

Listed:
  • Javier Felipe-Andreu

    (Research Centre for Energy Resources and Consumption (CIRCE Institute), Universidad de Zaragoza, CIRCE Building, Campus Río Ebro, Mariano Esquillor Gómez, 15, 50018 Zaragoza, Spain)

  • Antonio Valero

    (Research Centre for Energy Resources and Consumption (CIRCE Institute), Universidad de Zaragoza, CIRCE Building, Campus Río Ebro, Mariano Esquillor Gómez, 15, 50018 Zaragoza, Spain)

  • Alicia Valero

    (Research Centre for Energy Resources and Consumption (CIRCE Institute), Universidad de Zaragoza, CIRCE Building, Campus Río Ebro, Mariano Esquillor Gómez, 15, 50018 Zaragoza, Spain)

Abstract

This study develops a methodology to assess the energy transition’s territorial, ecological and material impacts on regions. As a case study, the methodology is applied to the Cantabrian-Mediterranean Bioregion, a geographical area constituting eight autonomous communities located in the north of Spain. Two energy demand scenarios for 2030 and 2050 were assessed. The 2030 scenario is based on the Spanish government’s planning, and the 2050 scenario constitutes a net-zero emission economy based on electrification. Energy dependence between autonomous communities, energy and raw material needs, and availability are obtained for both scenarios. Results show a high imbalance between energy producer–consumer autonomous communities and an ecological and critical material deficit for the Bioregion. Two alternative scenarios are proposed, one based on self-sufficiency to ensure a balanced energy transition and another based on energy and material efficiency seeking that the ecological and critical material footprints do not surpass the planet’s carrying capacity. The indicators and methodology proposed can be easily replicated elsewhere and help develop more equitable and sustainable territorial planning strategies.

Suggested Citation

  • Javier Felipe-Andreu & Antonio Valero & Alicia Valero, 2022. "Territorial Inequalities, Ecological and Material Footprints of the Energy Transition: Case Study of the Cantabrian-Mediterranean Bioregion," Land, MDPI, vol. 11(11), pages 1-22, October.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:11:p:1891-:d:952428
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/11/1891/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/11/1891/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Palacios, Jose-Luis & Calvo, Guiomar & Valero, Alicia & Valero, Antonio, 2018. "The cost of mineral depletion in Latin America: An exergoecology view," Resources Policy, Elsevier, vol. 59(C), pages 117-124.
    2. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel, 2018. "Material bottlenecks in the future development of green technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 178-200.
    3. Azam, Anam & Rafiq, Muhammad & Shafique, Muhammad & Zhang, Haonan & Yuan, Jiahai, 2021. "Analyzing the effect of natural gas, nuclear energy and renewable energy on GDP and carbon emissions: A multi-variate panel data analysis," Energy, Elsevier, vol. 219(C).
    4. Hussain, Arif & Perwez, Usama & Ullah, Kafait & Kim, Chul-Hwan & Asghar, Nosheen, 2021. "Long-term scenario pathways to assess the potential of best available technologies and cost reduction of avoided carbon emissions in an existing 100% renewable regional power system: A case study of G," Energy, Elsevier, vol. 221(C).
    5. Poggi, Francesca & Firmino, Ana & Amado, Miguel, 2018. "Planning renewable energy in rural areas: Impacts on occupation and land use," Energy, Elsevier, vol. 155(C), pages 630-640.
    6. Valero, Alicia & Valero, Antonio & Arauzo, Inmaculada, 2008. "Evolution of the decrease in mineral exergy throughout the 20th century. The case of copper in the US," Energy, Elsevier, vol. 33(2), pages 107-115.
    7. Jose-Luis Palacios & Guiomar Calvo & Alicia Valero & Antonio Valero, 2018. "Exergoecology Assessment of Mineral Exports from Latin America: Beyond a Tonnage Perspective," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    8. Narayan, Paresh Kumar & Narayan, Seema & Popp, Stephan, 2010. "A note on the long-run elasticities from the energy consumption-GDP relationship," Applied Energy, Elsevier, vol. 87(3), pages 1054-1057, March.
    9. Dario Caldara & Sarah Conlisk & Matteo Iacoviello & Maddie Penn, 2022. "The Effect of the War in Ukraine on Global Activity and Inflation," FEDS Notes 2022-05-27-2, Board of Governors of the Federal Reserve System (U.S.).
    10. Hager, Tiffany J. & Morawicki, Ruben, 2013. "Energy consumption during cooking in the residential sector of developed nations: A review," Food Policy, Elsevier, vol. 40(C), pages 54-63.
    11. García-Olivares, Antonio & Ballabrera-Poy, Joaquim & García-Ladona, Emili & Turiel, Antonio, 2012. "A global renewable mix with proven technologies and common materials," Energy Policy, Elsevier, vol. 41(C), pages 561-574.
    12. Martín Lallana & Adrián Almazán & Alicia Valero & Ángel Lareo, 2021. "Assessing Energy Descent Scenarios for the Ecological Transition in Spain 2020–2030," Sustainability, MDPI, vol. 13(21), pages 1-34, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lina Volodzkiene & Dalia Streimikiene, 2023. "Energy Inequality Indicators: A Comprehensive Review for Exploring Ways to Reduce Inequality," Energies, MDPI, vol. 16(16), pages 1-28, August.
    2. Wang, Canghong & Zheng, Chaoliang & Hu, Caishuang & Luo, Yibin & Liang, Miya, 2023. "Resources sustainability and energy transition in China: Asymmetric role of digital trade and policy uncertainty using QARDL," Resources Policy, Elsevier, vol. 85(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Tianjiao & Wang, Anjian & Xing, Wanli & Li, Ying & Zhou, Yanjing, 2019. "Assessing mineral extraction and trade in China from 1992 to 2015: A comparison of material flow analysis and exergoecological approach," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    2. Hache, Emmanuel & Simoën, Marine & Seck, Gondia Sokhna & Bonnet, Clément & Jabberi, Aymen & Carcanague, Samuel, 2020. "The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios," International Economics, Elsevier, vol. 163(C), pages 114-133.
    3. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    4. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    5. Islam, Md. Monirul & Sohag, Kazi & Hammoudeh, Shawkat & Mariev, Oleg & Samargandi, Nahla, 2022. "Minerals import demands and clean energy transitions: A disaggregated analysis," Energy Economics, Elsevier, vol. 113(C).
    6. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    7. Sofia Russo & Alicia Valero & Antonio Valero & Marta Iglesias-Émbil, 2021. "Exergy-Based Assessment of Polymers Production and Recycling: An Application to the Automotive Sector," Energies, MDPI, vol. 14(2), pages 1-19, January.
    8. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    9. Aryal, Kishor & Maraseni, Tek & Apan, Armando, 2023. "Examining policy−institution−program (PIP) responses against the drivers of ecosystem dynamics. A chronological review (1960–2020) from Nepal," Land Use Policy, Elsevier, vol. 132(C).
    10. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
    11. Zhongwei, Huang & Liu, Yishu, 2022. "The role of eco-innovations, trade openness, and human capital in sustainable renewable energy consumption: Evidence using CS-ARDL approach," Renewable Energy, Elsevier, vol. 201(P1), pages 131-140.
    12. Sofie Hagejärd & Anita Ollár & Paula Femenías & Ulrike Rahe, 2020. "Designing for Circularity—Addressing Product Design, Consumption Practices and Resource Flows in Domestic Kitchens," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    13. Lucia Recchia & Alessio Cappelli & Enrico Cini & Francesco Garbati Pegna & Paolo Boncinelli, 2019. "Environmental Sustainability of Pasta Production Chains: An Integrated Approach for Comparing Local and Global Chains," Resources, MDPI, vol. 8(1), pages 1-16, March.
    14. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Ehigiamusoe, Kizito Uyi & Lean, Hooi Hooi & Smyth, Russell, 2020. "The moderating role of energy consumption in the carbon emissions-income nexus in middle-income countries," Applied Energy, Elsevier, vol. 261(C).
    16. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
    17. Tomiwa Sunday Adebayo & Abraham Ayobamiji Awosusi & Seun Damola Oladipupo & Ephraim Bonah Agyekum & Arunkumar Jayakumar & Nallapaneni Manoj Kumar, 2021. "Dominance of Fossil Fuels in Japan’s National Energy Mix and Implications for Environmental Sustainability," IJERPH, MDPI, vol. 18(14), pages 1-20, July.
    18. Nour Wehbe & Bassam Assaf & Salem Darwich, 2018. "Étude de causalité entre la consommation d’électricité et la croissance économique au Liban," Post-Print hal-01944291, HAL.
    19. Becker, Jonathon M., 2021. "General equilibrium impacts on the U.S. economy of a disruption to Chinese cobalt supply," Resources Policy, Elsevier, vol. 71(C).
    20. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:11:p:1891-:d:952428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.