IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v63y2019ic19.html
   My bibliography  Save this article

Assessing mineral extraction and trade in China from 1992 to 2015: A comparison of material flow analysis and exergoecological approach

Author

Listed:
  • Li, Tianjiao
  • Wang, Anjian
  • Xing, Wanli
  • Li, Ying
  • Zhou, Yanjing

Abstract

Mineral resources have made great contributions to China's economic development since late 20th century. However, China is also facing many challenges in current days, such as mineral depletion and environmental pollution. In order to identify the main minerals that affect China's mineral capital loss and environmental damage as well as to provide some useful information for the formulation of mineral development policy in China, the exergy replacement costs (ERC) and material flow analysis (MFA) principles are applied. In this paper, we analyze the production and international trade of 28 non-fuel minerals and 3 fossil fuels in China from 1992 to 2015. The results showed that (1) the total loss of mineral capital in China is 5.2 billion tonnes of oil equivalent in the period of 1992–2015, and the main minerals that affect mineral capital loss include coal, limestone, iron ore, aluminum, gypsum, potash, salt and zinc; (2) China appears to be a country of self-sufficient for minerals in mass terms, but it is increasingly dependent on imports of high-quality minerals, especially for non-fuels minerals, such as aluminum; (3) it is necessary to consider the quality of minerals when assessing for international environment burden transfer caused by mining activities; and (4) compared with conventional MFA, the change of China's mineral extraction and trade measured under ERC are more sensitive to changes in mineral development policy. Hence, China should improve resources efficiency by (1) giving priority to the management of coal, iron ore, aluminum, limestone et al. to avoid over-exploitation; (2) expanding the sources of mineral resources imports, especially for high-quality non-fuel minerals; and (3) enhancing the technical research and development to reduce energy consumption throughout the life cycle of mineral resources.

Suggested Citation

  • Li, Tianjiao & Wang, Anjian & Xing, Wanli & Li, Ying & Zhou, Yanjing, 2019. "Assessing mineral extraction and trade in China from 1992 to 2015: A comparison of material flow analysis and exergoecological approach," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
  • Handle: RePEc:eee:jrpoli:v:63:y:2019:i:c:19
    DOI: 10.1016/j.resourpol.2019.101460
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420719300911
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2019.101460?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Palacios, Jose-Luis & Calvo, Guiomar & Valero, Alicia & Valero, Antonio, 2018. "The cost of mineral depletion in Latin America: An exergoecology view," Resources Policy, Elsevier, vol. 59(C), pages 117-124.
    2. Guiomar Calvo & Alicia Valero & Antonio Valero, 2018. "Thermodynamic Approach to Evaluate the Criticality of Raw Materials and Its Application through a Material Flow Analysis in Europe," Journal of Industrial Ecology, Yale University, vol. 22(4), pages 839-852, August.
    3. Tang, Erzi & Peng, Chong, 2017. "A macro- and microeconomic analysis of coal production in China," Resources Policy, Elsevier, vol. 51(C), pages 234-242.
    4. Lei, Yalin & Cui, Na & Pan, Dongyang, 2013. "Economic and social effects analysis of mineral development in China and policy implications," Resources Policy, Elsevier, vol. 38(4), pages 448-457.
    5. Chengjin Wang & César Ducruet, 2014. "Transport corridors and regional balance in China: the case of coal trade and logistics," Post-Print halshs-01069149, HAL.
    6. Calvo, Guiomar & Valero, Alicia & Valero, Antonio & Carpintero, Óscar, 2015. "An exergoecological analysis of the mineral economy in Spain," Energy, Elsevier, vol. 88(C), pages 2-8.
    7. Whiting, Kai & Carmona, Luis Gabriel & Sousa, Tânia, 2017. "A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 202-211.
    8. Valero, Alicia & Valero, Antonio & Arauzo, Inmaculada, 2008. "Evolution of the decrease in mineral exergy throughout the 20th century. The case of copper in the US," Energy, Elsevier, vol. 33(2), pages 107-115.
    9. Jose-Luis Palacios & Guiomar Calvo & Alicia Valero & Antonio Valero, 2018. "Exergoecology Assessment of Mineral Exports from Latin America: Beyond a Tonnage Perspective," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    10. Wang, Chengjin & Ducruet, César, 2014. "Transport corridors and regional balance in China: the case of coal trade and logistics," Journal of Transport Geography, Elsevier, vol. 40(C), pages 3-16.
    11. Wang, Jianliang & Feng, Lianyong & Davidsson, Simon & Höök, Mikael, 2013. "Chinese coal supply and future production outlooks," Energy, Elsevier, vol. 60(C), pages 204-214.
    12. Chengjin Wang & César Ducruet, 2014. "Transport corridors and regional balance in China : The case of coal trade and logistics," Post-Print hal-03246955, HAL.
    13. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Geng, Yong & Sarkis, Joseph, 2017. "Material flow analysis of lithium in China," Resources Policy, Elsevier, vol. 51(C), pages 100-106.
    14. Gabriel Carmona, Luis & Whiting, Kai & Valero, Alicia & Valero, Antonio, 2015. "Colombian mineral resources: An analysis from a Thermodynamic Second Law perspective," Resources Policy, Elsevier, vol. 45(C), pages 23-28.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi, Hai & Dong, Zhiliang & Dong, Shaohui & Sun, Xiaotian & Zhao, Yiran & Li, Yu, 2021. "Extended exergy accounting for smelting and pressing of metals industry in China," Resources Policy, Elsevier, vol. 74(C).
    2. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    3. Hu, Xiaoqian & Wang, Chao & Lim, Ming K. & Chen, Wei-Qiang & Teng, Limin & Wang, Peng & Wang, Heming & Zhang, Chao & Yao, Cuiyou & Ghadimi, Pezhman, 2023. "Critical systemic risk sources in global lithium-ion battery supply networks: Static and dynamic network perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Yang, Ping & Gao, Xiangyun & Zhao, Yiran & Jia, Nanfei & Dong, Xiaojuan, 2021. "Lithium resource allocation optimization of the lithium trading network based on material flow," Resources Policy, Elsevier, vol. 74(C).
    5. Zhu, Xiangyan & Geng, Yong & Gao, Ziyan & Tian, Xu & Xiao, Shijiang & Houssini, Khaoula, 2023. "Investigating zirconium flows and stocks in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 80(C).
    6. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    7. Li, Yingli & Huang, Jianbai & Zhang, Hongwei, 2022. "The impact of country risks on cobalt trade patterns from the perspective of the industrial chain," Resources Policy, Elsevier, vol. 77(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    2. Zhang, Yujiang & Feng, Guorui & Zhang, Min & Ren, Hongrui & Bai, Jinwen & Guo, Yuxia & Jiang, Haina & Kang, Lixun, 2016. "Residual coal exploitation and its impact on sustainable development of the coal industry in China," Energy Policy, Elsevier, vol. 96(C), pages 534-541.
    3. Yuexiang Yang & Xiaoyu Zheng & Zhen Sun, 2020. "Coal Resource Security Assessment in China: A Study Using Entropy-Weight-Based TOPSIS and BP Neural Network," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    4. Kai Whiting & Luis Gabriel Carmona & Angeles Carrasco & Tânia Sousa, 2017. "Exergy Replacement Cost of Fossil Fuels: Closing the Carbon Cycle," Energies, MDPI, vol. 10(7), pages 1-21, July.
    5. Song, Yunting & Wang, Nuo, 2019. "Exploring temporal and spatial evolution of global coal supply-demand and flow structure," Energy, Elsevier, vol. 168(C), pages 1073-1080.
    6. Javier Felipe-Andreu & Antonio Valero & Alicia Valero, 2022. "Territorial Inequalities, Ecological and Material Footprints of the Energy Transition: Case Study of the Cantabrian-Mediterranean Bioregion," Land, MDPI, vol. 11(11), pages 1-22, October.
    7. Whiting, Kai & Carmona, Luis Gabriel & Sousa, Tânia, 2017. "A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 202-211.
    8. Xie, Qiwei & Hao, Jingjing & Li, Jingyu & Zheng, Xiaolong, 2022. "Carbon price prediction considering climate change: A text-based framework," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 382-401.
    9. Wang, Wenya & Fan, L.W. & Zhou, P., 2022. "Evolution of global fossil fuel trade dependencies," Energy, Elsevier, vol. 238(PC).
    10. Wang, Wenya & Fan, Liwei & Li, Zhenfu & Zhou, Peng & Chen, Xue, 2021. "Measuring dynamic competitive relationship and intensity among the global coal importing trade," Applied Energy, Elsevier, vol. 303(C).
    11. Mengyao Ren & Yaoyu Lin & Meihan Jin & Zhongyuan Duan & Yongxi Gong & Yu Liu, 2020. "Examining the effect of land-use function complementarity on intra-urban spatial interactions using metro smart card records," Transportation, Springer, vol. 47(4), pages 1607-1629, August.
    12. Hannes J. König & Aranka Podhora & Lin Zhen & Katharina Helming & Huimin Yan & Bingzhen Du & Jost Wübbeke & Chao Wang & Julie Klinger & Cheng Chen & Sandra Uthes, 2015. "Knowledge Brokerage for Impact Assessment of Land Use Scenarios in Inner Mongolia, China: Extending and Testing the FoPIA Approach," Sustainability, MDPI, vol. 7(5), pages 1-23, April.
    13. Tei, Alessio & Ferrari, Claudio, 2018. "PPIs and transport infrastructure: Evidence from Latin America and the Caribbean," Journal of Transport Geography, Elsevier, vol. 71(C), pages 204-212.
    14. Palacios, Jose-Luis & Calvo, Guiomar & Valero, Alicia & Valero, Antonio, 2018. "The cost of mineral depletion in Latin America: An exergoecology view," Resources Policy, Elsevier, vol. 59(C), pages 117-124.
    15. Feng, Lin & Yuan, Liwei, 2017. "A developmental model on quantifying urban policy effectiveness in port city relations," MPRA Paper 81037, University Library of Munich, Germany.
    16. Justin Berli & Mattia Bunel & César Ducruet, 2018. "Sea-Land Interdependence in the Global Maritime Network: the Case of Australian Port Cities," Networks and Spatial Economics, Springer, vol. 18(3), pages 447-471, September.
    17. Zhang, Qiang & Yan, Kai & Yang, Dong, 2021. "Port system evolution in Chinese coastal regions: A provincial perspective," Journal of Transport Geography, Elsevier, vol. 92(C).
    18. Justin Berli & Mattia Bunel & César Ducruet, 2018. "Sea-Land Interdependence in the Global Maritime Network: the Case of Australian Port Cities," Post-Print hal-01806692, HAL.
    19. Teng Ma & Kenji Takeuchi, 2016. "Controlling SO2 emissions in China: A panel data analysis of the 11th Five-Year Plan," Discussion Papers 1609, Graduate School of Economics, Kobe University.
    20. Cui, Shana & Pittman, Russell & Zhao, Jian, 2018. "Restructuring the Chinese Freight Railway: Two Scenarios," MPRA Paper 88407, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:63:y:2019:i:c:19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.