IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p4953-d857155.html
   My bibliography  Save this article

The 50th Anniversary of The Limits to Growth : Does It Have Relevance for Today’s Energy Issues?

Author

Listed:
  • Charles A. S. Hall

    (College of Environmental Science and Forestry, State University of New York, Syracuse, NY 14250, USA)

Abstract

The Limits to Growth was a remarkable, and remarkably influential, model, book and concept published 50 years ago this year. Its importance is that it used, for essentially the first time, a quantitative systems approach and a computer model to question the dominant paradigm for most of society: growth. Initially, many events, and especially the oil crisis of the 1970s, seemed to support the idea that the limits were close. Many economists argued quite the opposite, and the later relaxation of the oil crisis (and decline in gasoline prices) seemed to support the economists’ position. Many argued that the model had failed, but a careful examination of model behavior vs. global and many national data sets assessed by a number of researchers suggests that the model’s predictions (even if they had not been meant for such a specific task) were still remarkably accurate to date. While the massive changes predicted by the model have not yet come to pass globally, they are clearly occurring for many individual nations. Additionally, global patterns of climate change, fuel and mineral depletion, environmental degradation and population growth are quite as predicted by the original model. Whether or not the world as a whole continues to follow the general patterns of the model may be mostly a function of what happens with energy and whether humans can accept constraints on their propensity to keep growing.

Suggested Citation

  • Charles A. S. Hall, 2022. "The 50th Anniversary of The Limits to Growth : Does It Have Relevance for Today’s Energy Issues?," Energies, MDPI, vol. 15(14), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4953-:d:857155
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/4953/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/4953/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul E. Brockway & Anne Owen & Lina I. Brand-Correa & Lukas Hardt, 2019. "Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources," Nature Energy, Nature, vol. 4(7), pages 612-621, July.
    2. Ayres, Robert U. & Warr, Benjamin, 2005. "Accounting for growth: the role of physical work," Structural Change and Economic Dynamics, Elsevier, vol. 16(2), pages 181-209, June.
    3. Lambert, Jessica G. & Hall, Charles A.S. & Balogh, Stephen & Gupta, Ajay & Arnold, Michelle, 2014. "Energy, EROI and quality of life," Energy Policy, Elsevier, vol. 64(C), pages 153-167.
    4. Kubiszewski, Ida & Cleveland, Cutler J. & Endres, Peter K., 2010. "Meta-analysis of net energy return for wind power systems," Renewable Energy, Elsevier, vol. 35(1), pages 218-225.
    5. Hall, Charles A.S. & Lambert, Jessica G. & Balogh, Stephen B., 2014. "EROI of different fuels and the implications for society," Energy Policy, Elsevier, vol. 64(C), pages 141-152.
    6. Carey W. King & John P. Maxwell & Alyssa Donovan, 2015. "Comparing World Economic and Net Energy Metrics, Part 2: Total Economy Expenditure Perspective," Energies, MDPI, vol. 8(11), pages 1-22, November.
    7. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    8. Gregor Semieniuk & Lance Taylor & Armon Rezai & Duncan K. Foley, 2021. "Plausible energy demand patterns in a growing global economy with climate policy," Nature Climate Change, Nature, vol. 11(4), pages 313-318, April.
    9. Charles A. S. Hall & Stephen Balogh & David J.R. Murphy, 2009. "What is the Minimum EROI that a Sustainable Society Must Have?," Energies, MDPI, vol. 2(1), pages 1-23, January.
    10. Graham M Turner, 2008. "A Comparison of the Limits to Growth with Thirty Years of Reality," Socio-Economics and the Environment in Discussion (SEED) Working Paper Series 2008-09, CSIRO Sustainable Ecosystems.
    11. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    12. Nordhaus, William D, 1973. "World Dynamics: Measurement Without Data," Economic Journal, Royal Economic Society, vol. 83(332), pages 1156-1183, December.
    13. Carey W. King, 2015. "Comparing World Economic and Net Energy Metrics, Part 3: Macroeconomic Historical and Future Perspectives," Energies, MDPI, vol. 8(11), pages 1-24, November.
    14. Brockway, Paul E. & Sorrell, Steve & Semieniuk, Gregor & Heun, Matthew Kuperus & Court, Victor, 2021. "Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    15. Kaufmann, Robert K., 1992. "A biophysical analysis of the energy/real GDP ratio: implications for substitution and technical change," Ecological Economics, Elsevier, vol. 6(1), pages 35-56, July.
    16. Hallock, John L. & Wu, Wei & Hall, Charles A.S. & Jefferson, Michael, 2014. "Forecasting the limits to the availability and diversity of global conventional oil supply: Validation," Energy, Elsevier, vol. 64(C), pages 130-153.
    17. Carey W. King & John P. Maxwell & Alyssa Donovan, 2015. "Comparing World Economic and Net Energy Metrics, Part 1: Single Technology and Commodity Perspective," Energies, MDPI, vol. 8(11), pages 1-26, November.
    18. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    2. Marco Vittorio Ecclesia & João Santos & Paul E. Brockway & Tiago Domingos, 2022. "A Comprehensive Societal Energy Return on Investment Study of Portugal Reveals a Low but Stable Value," Energies, MDPI, vol. 15(10), pages 1-22, May.
    3. King, Carey W., 2020. "An integrated biophysical and economic modeling framework for long-term sustainability analysis: the HARMONEY model," Ecological Economics, Elsevier, vol. 169(C).
    4. Oosterom, Jan-Pieter & Hall, Charles A.S., 2022. "Enhancing the evaluation of Energy Investments by supplementing traditional discounted cash flow with Energy Return on Investment analysis," Energy Policy, Elsevier, vol. 168(C).
    5. Graham Palmer, 2018. "A Biophysical Perspective of IPCC Integrated Energy Modelling," Energies, MDPI, vol. 11(4), pages 1-17, April.
    6. Ilaria Perissi & Alessandro Lavacchi & Ugo Bardi, 2021. "The Role of Energy Return on Energy Invested (EROEI) in Complex Adaptive Systems," Energies, MDPI, vol. 14(24), pages 1-15, December.
    7. Carey W. King, 2021. "Interdependence of Growth, Structure, Size and Resource Consumption During an Economic Growth Cycle," Papers 2106.02512, arXiv.org.
    8. Palmer, Graham, 2017. "An input-output based net-energy assessment of an electricity supply industry," Energy, Elsevier, vol. 141(C), pages 1504-1516.
    9. Jackson, Andrew & Jackson, Tim, 2021. "Modelling energy transition risk: The impact of declining energy return on investment (EROI)," Ecological Economics, Elsevier, vol. 185(C).
    10. Feng, Jingxuan & Feng, Lianyong & Wang, Jianliang & King, Carey W., 2018. "Modeling the point of use EROI and its implications for economic growth in China," Energy, Elsevier, vol. 144(C), pages 232-242.
    11. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    12. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    13. Louis Delannoy & Pierre-Yves Longaretti & David. J. Murphy & Emmanuel Prados, 2021. "Assessing Global Long-Term EROI of Gas: A Net-Energy Perspective on the Energy Transition," Energies, MDPI, vol. 14(16), pages 1-16, August.
    14. Fizaine, Florian & Court, Victor, 2016. "Energy expenditure, economic growth, and the minimum EROI of society," Energy Policy, Elsevier, vol. 95(C), pages 172-186.
    15. Jingxuan Feng & Lianyong Feng & Jianliang Wang, 2018. "Analysis of Point-of-Use Energy Return on Investment and Net Energy Yields from China’s Conventional Fossil Fuels," Energies, MDPI, vol. 11(2), pages 1-21, February.
    16. Melgar-Melgar, Rigo E. & Hall, Charles A.S., 2020. "Why ecological economics needs to return to its roots: The biophysical foundation of socio-economic systems," Ecological Economics, Elsevier, vol. 169(C).
    17. Rye, Craig D. & Jackson, Tim, 2018. "A review of EROEI-dynamics energy-transition models," Energy Policy, Elsevier, vol. 122(C), pages 260-272.
    18. Jun Yan & Lianyong Feng & Alina Steblyanskaya & Anton Sokolov & Nataliya Iskritskaya, 2019. "Creating an Energy Analysis Concept for Oil and Gas Companies: The Case of the Yakutiya Company in Russia," Energies, MDPI, vol. 12(2), pages 1-18, January.
    19. Ugo Bardi, 2016. "What Future for the Anthropocene? A Biophysical Interpretation," Biophysical Economics and Resource Quality, Springer, vol. 1(1), pages 1-7, August.
    20. Buus, Tomáš, 2017. "Energy efficiency and energy prices: A general mathematical framework," Energy, Elsevier, vol. 139(C), pages 743-754.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4953-:d:857155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.