IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i11p917-d82215.html
   My bibliography  Save this article

Comparing Apples to Apples: Why the Net Energy Analysis Community Needs to Adopt the Life-Cycle Analysis Framework

Author

Listed:
  • David J. Murphy

    (Environmental Studies Department, St. Lawrence University, Canton, NY 13617, USA)

  • Michael Carbajales-Dale

    (Environmental Engineering & Earth Sciences, Clemson University, Clemson, SC 29634, USA)

  • Devin Moeller

    (Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA)

Abstract

How do we know which energy technologies or resources are worth pursuing and which aren’t? One way to answer that question is to compare the energy return of a certain technology—i.e., how much energy is remaining after accounting for the amount of energy expended in the production and delivery process. Such energy return ratios (the most famous of which is energy return on investment (EROI)) fall within the field of net energy analysis (NEA), and provide an easy way to determine which technology is “better”; i.e., higher Energy Return Ratios (ERRs) are, certeris paribus, better than lower ERRs. Although useful as a broad measure of energy profitability, comparisons can also be misleading, particularly if the units being compared are different. For example, the energy content of electricity produced from a photovoltaic cell is different than the energy content of coal at the mine-mouth, yet these are often compared directly within the literature. These types of inconsistencies are common within the NEA literature. In this paper, we offer life cycle assessment (LCA) and the LCA methodology as a possible solution to the persistent methodological issues within the NEA community, and urge all NEA practitioners to adopt this methodology in the future.

Suggested Citation

  • David J. Murphy & Michael Carbajales-Dale & Devin Moeller, 2016. "Comparing Apples to Apples: Why the Net Energy Analysis Community Needs to Adopt the Life-Cycle Analysis Framework," Energies, MDPI, vol. 9(11), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:917-:d:82215
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/11/917/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/11/917/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leach, Gerald, 1975. "Energy and food production," Food Policy, Elsevier, vol. 1(1), pages 62-73, November.
    2. Nathan Gagnon & Charles A.S. Hall & Lysle Brinker, 2009. "A Preliminary Investigation of Energy Return on Energy Investment for Global Oil and Gas Production," Energies, MDPI, vol. 2(3), pages 1-14, July.
    3. Weißbach, D. & Ruprecht, G. & Huke, A. & Czerski, K. & Gottlieb, S. & Hussein, A., 2013. "Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants," Energy, Elsevier, vol. 52(C), pages 210-221.
    4. Chapman, P. F., 1974. "1. Energy costs: a review of methods," Energy Policy, Elsevier, vol. 2(2), pages 91-103, June.
    5. Cleveland, Cutler J., 2005. "Net energy from the extraction of oil and gas in the United States," Energy, Elsevier, vol. 30(5), pages 769-782.
    6. Adam R. Brandt, 2011. "Oil Depletion and the Energy Efficiency of Oil Production: The Case of California," Sustainability, MDPI, vol. 3(10), pages 1-22, October.
    7. Arvesen, Anders & Hertwich, Edgar G., 2015. "More caution is needed when using life cycle assessment to determine energy return on investment (EROI)," Energy Policy, Elsevier, vol. 76(C), pages 1-6.
    8. Zhang, Yongli & Colosi, Lisa M., 2013. "Practical ambiguities during calculation of energy ratios and their impacts on life cycle assessment calculations," Energy Policy, Elsevier, vol. 57(C), pages 630-633.
    9. Raugei, Marco & Fullana-i-Palmer, Pere & Fthenakis, Vasilis, 2012. "The energy return on energy investment (EROI) of photovoltaics: Methodology and comparisons with fossil fuel life cycles," Energy Policy, Elsevier, vol. 45(C), pages 576-582.
    10. Charles A. S. Hall & Stephen Balogh & David J.R. Murphy, 2009. "What is the Minimum EROI that a Sustainable Society Must Have?," Energies, MDPI, vol. 2(1), pages 1-23, January.
    11. Philip F. Henshaw & Carey King & Jay Zarnikau, 2011. "System Energy Assessment (SEA), Defining a Standard Measure of EROI for Energy Businesses as Whole Systems," Sustainability, MDPI, vol. 3(10), pages 1-36, October.
    12. Chapman, Peter, 1976. "Energy analysis: A review of methods and applications," Omega, Elsevier, vol. 4(1), pages 19-33.
    13. Brandt, Adam R. & Dale, Michael & Barnhart, Charles J., 2013. "Calculating systems-scale energy efficiency and net energy returns: A bottom-up matrix-based approach," Energy, Elsevier, vol. 62(C), pages 235-247.
    14. Carey W. King, 2015. "Comparing World Economic and Net Energy Metrics, Part 3: Macroeconomic Historical and Future Perspectives," Energies, MDPI, vol. 8(11), pages 1-24, November.
    15. Raugei, Marco & Leccisi, Enrica, 2016. "A comprehensive assessment of the energy performance of the full range of electricity generation technologies deployed in the United Kingdom," Energy Policy, Elsevier, vol. 90(C), pages 46-59.
    16. Carey W. King & John P. Maxwell & Alyssa Donovan, 2015. "Comparing World Economic and Net Energy Metrics, Part 1: Single Technology and Commodity Perspective," Energies, MDPI, vol. 8(11), pages 1-26, November.
    17. Herendeen, Robert A., 1978. "Input-output techniques and energy cost of commodities," Energy Policy, Elsevier, vol. 6(2), pages 162-165, June.
    18. Dale, M. & Krumdieck, S. & Bodger, P., 2012. "Global energy modelling — A biophysical approach (GEMBA) part 1: An overview of biophysical economics," Ecological Economics, Elsevier, vol. 73(C), pages 152-157.
    19. Adam R. Brandt & Michael Dale, 2011. "A General Mathematical Framework for Calculating Systems-Scale Efficiency of Energy Extraction and Conversion: Energy Return on Investment (EROI) and Other Energy Return Ratios," Energies, MDPI, vol. 4(8), pages 1-35, August.
    20. David J. Murphy & Charles A.S. Hall & Michael Dale & Cutler Cleveland, 2011. "Order from Chaos: A Preliminary Protocol for Determining the EROI of Fuels," Sustainability, MDPI, vol. 3(10), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    2. Carey W. King & John P. Maxwell & Alyssa Donovan, 2015. "Comparing World Economic and Net Energy Metrics, Part 1: Single Technology and Commodity Perspective," Energies, MDPI, vol. 8(11), pages 1-26, November.
    3. Carey W. King & John P. Maxwell & Alyssa Donovan, 2015. "Comparing World Economic and Net Energy Metrics, Part 2: Total Economy Expenditure Perspective," Energies, MDPI, vol. 8(11), pages 1-22, November.
    4. Palmer, Graham, 2017. "An input-output based net-energy assessment of an electricity supply industry," Energy, Elsevier, vol. 141(C), pages 1504-1516.
    5. Fizaine, Florian & Court, Victor, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Ecological Economics, Elsevier, vol. 110(C), pages 106-118.
    6. King, Carey W., 2014. "Matrix method for comparing system and individual energy return ratios when considering an energy transition," Energy, Elsevier, vol. 72(C), pages 254-265.
    7. Feng, Jingxuan & Feng, Lianyong & Wang, Jianliang & King, Carey W., 2018. "Modeling the point of use EROI and its implications for economic growth in China," Energy, Elsevier, vol. 144(C), pages 232-242.
    8. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    9. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    10. Buus, Tomáš, 2017. "Energy efficiency and energy prices: A general mathematical framework," Energy, Elsevier, vol. 139(C), pages 743-754.
    11. Florian Fizaine & Victor Court, 2016. "The energy-economic growth relationship: a new insight from the EROI perspective," Working Papers 1601, Chaire Economie du climat.
    12. Marco Vittorio Ecclesia & João Santos & Paul E. Brockway & Tiago Domingos, 2022. "A Comprehensive Societal Energy Return on Investment Study of Portugal Reveals a Low but Stable Value," Energies, MDPI, vol. 15(10), pages 1-22, May.
    13. Salehi, Mohammad & Khajehpour, Hossein & Saboohi, Yadollah, 2020. "Extended Energy Return on Investment of multiproduct energy systems," Energy, Elsevier, vol. 192(C).
    14. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    15. Raugei, Marco & Sgouridis, Sgouris & Murphy, David & Fthenakis, Vasilis & Frischknecht, Rolf & Breyer, Christian & Bardi, Ugo & Barnhart, Charles & Buckley, Alastair & Carbajales-Dale, Michael & Csala, 2017. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response," Energy Policy, Elsevier, vol. 102(C), pages 377-384.
    16. Brandt, Adam R. & Dale, Michael & Barnhart, Charles J., 2013. "Calculating systems-scale energy efficiency and net energy returns: A bottom-up matrix-based approach," Energy, Elsevier, vol. 62(C), pages 235-247.
    17. Adam R. Brandt, 2017. "How Does Energy Resource Depletion Affect Prosperity? Mathematics of a Minimum Energy Return on Investment (EROI)," Biophysical Economics and Resource Quality, Springer, vol. 2(1), pages 1-12, March.
    18. Jingxuan Feng & Lianyong Feng & Jianliang Wang, 2018. "Analysis of Point-of-Use Energy Return on Investment and Net Energy Yields from China’s Conventional Fossil Fuels," Energies, MDPI, vol. 11(2), pages 1-21, February.
    19. Florian Fizaine & Victor Court, 2014. "Energy transition toward renewables and metal depletion: an approach through the EROI concept," Working Papers 1407, Chaire Economie du climat.
    20. Adrien Fabre, 2018. "Evolution of EROIs of Electricity Until 2050: Estimation Using the Input-Output Model THEMIS," Policy Papers 2018.09, FAERE - French Association of Environmental and Resource Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:917-:d:82215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.