IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v20y1998i1p85-100.html
   My bibliography  Save this item

Changes in energy consumption and energy intensity: A complete decomposition model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Vicent Alcántara Escolano & Emilio Padilla Rosa, 2005. "Análisis de las emisiones de CO2 y sus factores explicativos en las diferentes áreas del mundo," Revista de Economía Crítica, Asociación de Economía Crítica, vol. 4, pages 17-37.
  2. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
  3. Shigemi Kagawa & Yuriko Goto & Sangwon Suh & Keisuke Nansai & Yuki Kudoh, 2012. "Accounting for Changes in Automobile Gasoline Consumption in Japan: 2000–2007," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 1(1), pages 1-27, December.
  4. Jiyong Park & Taeyoung Jin & Sungin Lee & Jongroul Woo, 2021. "Industrial Electrification and Efficiency: Decomposition Evidence from the Korean Industrial Sector," Energies, MDPI, vol. 14(16), pages 1-18, August.
  5. Muller, Adrian, 2006. "Clarifying Poverty Decomposition," Working Papers in Economics 217, University of Gothenburg, Department of Economics, revised 17 Nov 2008.
  6. Xu, Yuan & Yang, Chi-Jen & Xuan, Xiaowei, 2013. "Engineering and optimization approaches to enhance the thermal efficiency of coal electricity generation in China," Energy Policy, Elsevier, vol. 60(C), pages 356-363.
  7. Sudhakara Reddy, B. & Kumar Ray, Binay, 2011. "Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector," Energy Policy, Elsevier, vol. 39(11), pages 7234-7243.
  8. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2020. "Decompositions and Policy Consequences of an Extraordinary Decline in Air Pollution from Electricity Generation," American Economic Journal: Economic Policy, American Economic Association, vol. 12(4), pages 244-274, November.
  9. Jana, Sebak Kumar & Lise, Wietze, 2023. "Carbon Emissions from Energy Use in India: Decomposition Analysis," MPRA Paper 117245, University Library of Munich, Germany.
  10. Yue-Jun Zhang & Ya-Bin Da, 2013. "Decomposing the changes of energy-related carbon emissions in China: evidence from the PDA approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 1109-1122, October.
  11. González, Domingo & Martínez, Manuel, 2012. "Changes in CO2 emission intensities in the Mexican industry," Energy Policy, Elsevier, vol. 51(C), pages 149-163.
  12. Santosh Kumar Sahu and Sumedha Kamboj, 2019. "Decomposition Analysis of GHG Emissions In Emerging Economies," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 44(3), pages 59-77, September.
  13. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
  14. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
  15. Papagiannaki, Katerina & Diakoulaki, Danae, 2009. "Decomposition analysis of CO2 emissions from passenger cars: The cases of Greece and Denmark," Energy Policy, Elsevier, vol. 37(8), pages 3259-3267, August.
  16. Chao Xu & Yunpeng Wang & Lili Li & Peng Wang, 2018. "Spatiotemporal Trajectory of China’s Provincial Energy Efficiency and Implications on the Route of Economic Transformation," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
  17. Sandeep Kumar Kujur, 2018. "Impact of Technological Change on Employment: Evidence from the Organised Manufacturing Industry in India," The Indian Journal of Labour Economics, Springer;The Indian Society of Labour Economics (ISLE), vol. 61(2), pages 339-376, June.
  18. Ana-Isabel Guerra & Ferran Sancho, 2013. "A Linear Price Model With Extractions," EcoMod2013 5113, EcoMod.
  19. Binay Kumar Ray & B.Sudhakara Reddy, 2007. "Decomposition of Energy Consumption and Energy Intensity in Indian Manufacturing Industries," Energy Working Papers 22327, East Asian Bureau of Economic Research.
  20. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
  21. Dong, Gang & Mao, Xianqiang & Zhou, Ji & Zeng, An, 2013. "Carbon footprint accounting and dynamics and the driving forces of agricultural production in Zhejiang Province, China," Ecological Economics, Elsevier, vol. 91(C), pages 38-47.
  22. Tol, Richard S.J. & Pacala, Stephen W. & Socolow, Robert H., 2009. "Understanding Long-Term Energy Use and Carbon Dioxide Emissions in the USA," Journal of Policy Modeling, Elsevier, vol. 31(3), pages 425-445, May.
  23. Wang, Wenwen & Li, Man & Zhang, Ming, 2017. "Study on the changes of the decoupling indicator between energy-related CO2 emission and GDP in China," Energy, Elsevier, vol. 128(C), pages 11-18.
  24. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
  25. Qi, Tianyu & Weng, Yuyan & Zhang, Xiliang & He, Jiankun, 2016. "An analysis of the driving factors of energy-related CO2 emission reduction in China from 2005 to 2013," Energy Economics, Elsevier, vol. 60(C), pages 15-22.
  26. Cheng, Shulei & Wang, Ping & Chen, Boyang & Fan, Wei, 2022. "Decoupling and decomposition analysis of CO2 emissions from government spending in China," Energy, Elsevier, vol. 243(C).
  27. Roca, Jordi & Serrano, Monica, 2007. "Income growth and atmospheric pollution in Spain: An input-output approach," Ecological Economics, Elsevier, vol. 63(1), pages 230-242, June.
  28. Wang, Xianzhu & Huang, He & Hong, Jingke & Ni, Danfei & He, Rongxiao, 2020. "A spatiotemporal investigation of energy-driven factors in China: A region-based structural decomposition analysis," Energy, Elsevier, vol. 207(C).
  29. Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
  30. Diakoulaki, D. & Mandaraka, M., 2007. "Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector," Energy Economics, Elsevier, vol. 29(4), pages 636-664, July.
  31. Taeyoung Jin & Bongseok Choi, 2020. "Sectoral Decomposition of Korea’s Energy Consumption by Global Value Chain Dimensions," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
  32. Larson, William & Yezer, Anthony, 2015. "The energy implications of city size and density," Journal of Urban Economics, Elsevier, vol. 90(C), pages 35-49.
  33. Inglesi-Lotz, Roula, 2018. "Decomposing the South African CO2 emissions within a BRICS countries context: Signalling potential energy rebound effects," Energy, Elsevier, vol. 147(C), pages 648-654.
  34. Ang, B.W. & Xu, X.Y. & Su, Bin, 2015. "Multi-country comparisons of energy performance: The index decomposition analysis approach," Energy Economics, Elsevier, vol. 47(C), pages 68-76.
  35. Marcel Kohler, 2008. "The impact of international trade on changing patterns of energy use in South African industry," Working Papers 088, Economic Research Southern Africa.
  36. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.
  37. Sun, J. W., 2000. "Is CO2 emission intensity comparable?," Energy Policy, Elsevier, vol. 28(15), pages 1081-1084, December.
  38. Paola Rocchi & Monica Serrano, 2011. "Environmental Structural Decomposition Analysis of Italian Emissions, 1995-2005," Working Papers in Economics 267, Universitat de Barcelona. Espai de Recerca en Economia.
  39. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
  40. Inglesi-Lotz, Roula & Blignaut, James N., 2011. "South Africa’s electricity consumption: A sectoral decomposition analysis," Applied Energy, Elsevier, vol. 88(12), pages 4779-4784.
  41. Maruyama, Takuya & Fukahori, Tatsuya, 2020. "Households with every member out-of-home (HEMO): Comparison using the 1984, 1997, and 2012 household travel surveys in Kumamoto, Japan," Journal of Transport Geography, Elsevier, vol. 82(C).
  42. Moutinho, Victor & Madaleno, Mara & Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "Factors affecting CO2 emissions in top countries on renewable energies: A LMDI decomposition application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 605-622.
  43. Andersson, Fredrik N.G. & Karpestam, Peter, 2013. "CO2 emissions and economic activity: Short- and long-run economic determinants of scale, energy intensity and carbon intensity," Energy Policy, Elsevier, vol. 61(C), pages 1285-1294.
  44. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27," Energy Policy, Elsevier, vol. 68(C), pages 576-584.
  45. Rühl, Christof & Appleby, Paul & Fennema, Julian & Naumov, Alexander & Schaffer, Mark, 2012. "Economic development and the demand for energy: A historical perspective on the next 20 years," Energy Policy, Elsevier, vol. 50(C), pages 109-116.
  46. Nagashima, Fumiya, 2018. "The sign reversal problem in structural decomposition analysis," Energy Economics, Elsevier, vol. 72(C), pages 307-312.
  47. Ang, B.W. & Huang, H.C. & Mu, A.R., 2009. "Properties and linkages of some index decomposition analysis methods," Energy Policy, Elsevier, vol. 37(11), pages 4624-4632, November.
  48. Moutinho, Victor & Moreira, António Carrizo & Silva, Pedro Miguel, 2015. "The driving forces of change in energy-related CO2 emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1485-1499.
  49. Samaa Mohy & Khadija El Aasar & Yasmin Sakr, 2023. "Decomposition Analysis of Virtual Water Outflows for Major Egyptian Exporting Crops to the European Union," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
  50. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
  51. Yousaf Ali & Maurizio Ciaschini & Claudio Socci & Rosita Pretaroli & Muhammad Sabir, 2019. "Identifying the sources of structural changes in CO2 emissions in Italy," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(2), pages 509-526, July.
  52. Katerina PAPAGIANNAKI & Danae DIAKOULAKI, 2008. "Decomposition Analysis of CO2 Emissions from Passenger Cars: The cases of Greece and Denmark," EcoMod2008 23800102, EcoMod.
  53. Meng, Bo & Wang, Jianguo & Andrew, Robbie & Xiao, Hao & Xue, Jinjun & Peters, Glen P., 2017. "Spatial spillover effects in determining China's regional CO2 emissions growth: 2007–2010," Energy Economics, Elsevier, vol. 63(C), pages 161-173.
  54. Geng, Yong & Liu, Ye & Liu, Dan & Zhao, Hengxin & Xue, Bing, 2011. "Regional societal and ecosystem metabolism analysis in China: A multi-scale integrated analysis of societal metabolism(MSIASM) approach," Energy, Elsevier, vol. 36(8), pages 4799-4808.
  55. Luukkanen, Jyrki & Kaivo-oja, Jari, 2002. "ASEAN tigers and sustainability of energy use--decomposition analysis of energy and CO2 efficiency dynamics," Energy Policy, Elsevier, vol. 30(4), pages 281-292, March.
  56. Katja Schumacher & Jayant Sathaye, 1999. "Carbon Emissions Trends for Developing Countries and Countries with Economies in Transition," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 68(4), pages 614-634.
  57. Carlino, Laurent & Coppens, François & González, Javier & Ortega, Manuel & Pérez-Duarte, Sébastien & Rubbrecht, Ilse & Vennix, Saskia, 2017. "Decomposition techniques for financial ratios of European non-financial listed groups," Statistics Paper Series 21, European Central Bank.
  58. Zhifu Mi & Hua Liao & D’Maris Coffman & Yi-Ming Wei, 2019. "Assessment of equity principles for international climate policy based on an integrated assessment model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 309-323, January.
  59. Ang, B.W. & Liu, F.L. & Chung, Hyun-Sik, 2004. "A generalized Fisher index approach to energy decomposition analysis," Energy Economics, Elsevier, vol. 26(5), pages 757-763, September.
  60. Wei Sun & Hua Cai & Yuwei Wang, 2018. "Refined Laspeyres Decomposition-Based Analysis of Relationship between Economy and Electric Carbon Productivity from the Provincial Perspective—Development Mode and Policy," Energies, MDPI, vol. 11(12), pages 1-20, December.
  61. Luukkanen, J. & Kaivo-oja, J., 2002. "A comparison of Nordic energy and CO2 intensity dynamics in the years 1960–1997," Energy, Elsevier, vol. 27(2), pages 135-150.
  62. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
  63. Lin, Boqiang & Moubarak, Mohamed, 2013. "Decomposition analysis: Change of carbon dioxide emissions in the Chinese textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 389-396.
  64. Yetkiner, Hakan & Berk, Istemi, 2023. "Energy intensity and directed fiscal policy," Economic Systems, Elsevier, vol. 47(2).
  65. Muller, Adrian, 2006. "Putting decomposition of energy use and pollution on a firm footing - clarifications on the residual, zero and negative values and strategies to assess the performance of decomposition methods," Working Papers in Economics 215, University of Gothenburg, Department of Economics, revised 10 Aug 2007.
  66. Akbar Ullah & Karim Khan & Munazza Akhtar, 2014. "Energy Intensity: A Decomposition Exercise for Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 53(4), pages 531-549.
  67. Liu, Hong & Wang, Chang & Tian, Meiyu & Wen, Fenghua, 2019. "Analysis of regional difference decomposition of changes in energy consumption in China during 1995–2015," Energy, Elsevier, vol. 171(C), pages 1139-1149.
  68. Korppoo, Anna & Luukkanen, Jyrki & Vehmas, Jarmo & Kinnunen, Miia, 2008. "What goes down must come up? Trends of industrial electricity use in the North-West of Russia," Energy Policy, Elsevier, vol. 36(9), pages 3588-3597, September.
  69. Işıl Şirin SELÇUK, 2018. "Türkiye Sanayi Sektörü Enerji Verimliliği: Genişletilmiş Logaritmik Ortalama Divisia Endeks Ayrıştırma Yöntemi Uygulaması," Sosyoekonomi Journal, Sosyoekonomi Society, issue 26(37).
  70. Heming Wang & Qiang Yue & Zhongwu Lu & Helmut Schuetz & Stefan Bringezu, 2013. "Total Material Requirement of Growing China: 1995–2008," Resources, MDPI, vol. 2(3), pages 1-16, August.
  71. Xiaoyue Wang & Shuyao Wu & Shuangcheng Li, 2017. "Urban Metabolism of Three Cities in Jing-Jin-Ji Urban Agglomeration, China: Using the MuSIASEM Approach," Sustainability, MDPI, vol. 9(8), pages 1-21, August.
  72. Ren, Shenggang & Fu, Xiang & Chen, XiaoHong, 2012. "Regional variation of energy-related industrial CO2 emissions mitigation in China," China Economic Review, Elsevier, vol. 23(4), pages 1134-1145.
  73. Ren, Shenggang & Hu, Zhen, 2012. "Effects of decoupling of carbon dioxide emission by Chinese nonferrous metals industry," Energy Policy, Elsevier, vol. 43(C), pages 407-414.
  74. Wietze LISE, 2005. "Decomposition of CO2 Emissions over 1980–2003 in Turkey," Working Papers 2005.24, Fondazione Eni Enrico Mattei.
  75. Shasha Wang & Rongrong Li, 2018. "Toward the Coordinated Sustainable Development of Urban Water Resource Use and Economic Growth: An Empirical Analysis of Tianjin City, China," Sustainability, MDPI, vol. 10(5), pages 1-13, April.
  76. Román-Collado, Rocío & Ordoñez, Manuel & Mundaca, Luis, 2018. "Has electricity turned green or black in Chile? A structural decomposition analysis of energy consumption," Energy, Elsevier, vol. 162(C), pages 282-298.
  77. Yuzhuo Huang & Yosuke Shigetomi & Andrew Chapman & Ken’ichi Matsumoto, 2019. "Uncovering Household Carbon Footprint Drivers in an Aging, Shrinking Society," Energies, MDPI, vol. 12(19), pages 1-18, September.
  78. Rogan, Fionn & Cahill, Caiman J. & Ó Gallachóir, Brian P., 2012. "Decomposition analysis of gas consumption in the residential sector in Ireland," Energy Policy, Elsevier, vol. 42(C), pages 19-36.
  79. Fernández, Esteban & Fernández, Paula, 2008. "An extension to Sun's decomposition methodology: The Path Based approach," Energy Economics, Elsevier, vol. 30(3), pages 1020-1036, May.
  80. Kempa, Karol & Haas, Christian, 2016. "Directed Technical Change and Energy Intensity Dynamics: Structural Change vs. Energy Efficiency," VfS Annual Conference 2016 (Augsburg): Demographic Change 145722, Verein für Socialpolitik / German Economic Association.
  81. Agnolucci, Paolo & Ekins, Paul & Iacopini, Giorgia & Anderson, Kevin & Bows, Alice & Mander, Sarah & Shackley, Simon, 2009. "Different scenarios for achieving radical reduction in carbon emissions: A decomposition analysis," Ecological Economics, Elsevier, vol. 68(6), pages 1652-1666, April.
  82. Pedregal, D.J. & Dejuán, O. & Gómez, N. & Tobarra, M.A., 2009. "Modelling demand for crude oil products in Spain," Energy Policy, Elsevier, vol. 37(11), pages 4417-4427, November.
  83. Rabeh Khalfaoui & Aviral Kumar Tiwari & Usman Khalid & Muhammad Shahbaz, 2023. "Nexus between carbon dioxide emissions and economic growth in G7 countries: fresh insights via wavelet coherence analysis," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 66(1), pages 31-66, January.
  84. Yadong Ning & Boya Zhang & Tao Ding & Ming Zhang, 2017. "Analysis of regional decoupling relationship between energy-related CO2 emission and economic growth in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 867-883, June.
  85. Du, Kerui & Xie, Chunping & Ouyang, Xiaoling, 2017. "A comparison of carbon dioxide (CO2) emission trends among provinces in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 19-25.
  86. Pui, Kiew Ling & Othman, Jamal, 2019. "The influence of economic, technical, and social aspects on energy-associated CO2 emissions in Malaysia: An extended Kaya identity approach," Energy, Elsevier, vol. 181(C), pages 468-493.
  87. Christian Haas and Karol Kempa, 2018. "Directed Technical Change and Energy Intensity Dynamics: Structural Change vs. Energy Efficiency," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
  88. Lasbrey Anochiwa & Oguwuike Michael Enyoghasim & Kalu E. Uma & C. Paul Obidike & Iyke Uwazie Uwazie & Ikwor Okoroafor Ogbonnaya & O. Richard Ojike & Clara Kelechi Anyanwu, 2020. "Energy Consumption and Economic Growth Nexus in Nigeria: Evidence based on ARDL Bound Test Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 713-721.
  89. Wei Shang & Guifen Pei & Conor Walsh & Ming Meng & Xiangsong Meng, 2016. "Have Market-oriented Reforms Decoupled China’s CO 2 Emissions from Total Electricity Generation? An Empirical Analysis," Sustainability, MDPI, vol. 8(5), pages 1-12, May.
  90. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2012. "Application of the Structural Decomposition Analysis to assess the indirect energy consumption and air emission changes related to Italian households consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1135-1145.
  91. Lin, Boqiang & Long, Houyin, 2014. "Promoting carbon emissions reduction in China's chemical process industry," Energy, Elsevier, vol. 77(C), pages 822-830.
  92. He Li & Kevin Lo & Mark Wang & Pingyu Zhang & Longyi Xue, 2016. "Industrial Energy Consumption in Northeast China under the Revitalisation Strategy: A Decomposition and Policy Analysis," Energies, MDPI, vol. 9(7), pages 1-13, July.
  93. Jinhe Jiang, 2017. "The decomposition and policy meaning of China’s carbon emission intensity," Evolutionary and Institutional Economics Review, Springer, vol. 14(1), pages 295-310, June.
  94. Cahill, Caiman J. & Ó Gallachóir, Brian P., 2012. "Combining physical and economic output data to analyse energy and CO2 emissions trends in industry," Energy Policy, Elsevier, vol. 49(C), pages 422-429.
  95. Yi Li & Yan Luo & Yingzi Wang & Laili Wang & Manhong Shen, 2017. "Decomposing the Decoupling of Water Consumption and Economic Growth in China’s Textile Industry," Sustainability, MDPI, vol. 9(3), pages 1-17, March.
  96. He, Bao-jie & Yang, Li & Griffy-Brown, Charla & Mou, Ben & Zhou, Ya-Nan & Ye, Miao, 2014. "The assessment of building energy efficiency in China rural society: Developing a new theoretical construct," Technology in Society, Elsevier, vol. 38(C), pages 130-138.
  97. Sobrino, Natalia & Monzon, Andres, 2014. "The impact of the economic crisis and policy actions on GHG emissions from road transport in Spain," Energy Policy, Elsevier, vol. 74(C), pages 486-498.
  98. Tan, Hao & Sun, Aijun & Lau, Henry, 2013. "CO2 embodiment in China–Australia trade: The drivers and implications," Energy Policy, Elsevier, vol. 61(C), pages 1212-1220.
  99. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
  100. Smit, Tycho A.B. & Hu, Jing & Harmsen, Robert, 2014. "Unravelling projected energy savings in 2020 of EU Member States using decomposition analyses," Energy Policy, Elsevier, vol. 74(C), pages 271-285.
  101. Roinioti, Argiro & Koroneos, Christopher, 2017. "The decomposition of CO2 emissions from energy use in Greece before and during the economic crisis and their decoupling from economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 448-459.
  102. Yousaf Ali & Rosita Pretaroli & Muhammad Sabir & Claudio Socci & Francesca Severini, 2020. "Structural changes in carbon dioxide (CO2) emissions in the United Kingdom (UK): an emission multiplier product matrix (EMPM) approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1545-1564, December.
  103. Matthias Pfaff & Rainer Walz, 2021. "Analysis of the development and structural drivers of raw‐material use in Germany," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 1063-1075, August.
  104. Thomas A. Knetsch & Arne J. Nagengast, 2017. "Penny wise and pound foolish? On the income from Germany’s foreign investments," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 153(4), pages 753-778, November.
  105. Xueqin Lin & Dai Wang & Yuefang Si, 2015. "Spatially Differentiated Features of Coal Resource Utilisation Efficiency in China," Energy & Environment, , vol. 26(6-7), pages 1129-1145, November.
  106. Wenxin Liu & Ruifan Xu & Yue Deng & Weinan Lu & Boyang Zhou & Minjuan Zhao, 2021. "Dynamic Relationships, Regional Differences, and Driving Mechanisms between Economic Development and Carbon Emissions from the Farming Industry: Empirical Evidence from Rural China," IJERPH, MDPI, vol. 18(5), pages 1-22, February.
  107. Kumbaroğlu, Gürkan, 2011. "A sectoral decomposition analysis of Turkish CO2 emissions over 1990–2007," Energy, Elsevier, vol. 36(5), pages 2419-2433.
  108. Kahrl, Fredrich & Roland-Holst, David & Zilberman, David, 2013. "Past as Prologue? Understanding energy use in post-2002 China," Energy Economics, Elsevier, vol. 36(C), pages 759-771.
  109. Fujii, Hidemichi & Managi, Shunsuke, 2016. "An evaluation of inclusive capital stock for urban planning," MPRA Paper 73306, University Library of Munich, Germany.
  110. Roula Inglesi-Lotz, 2017. "Decomposing the South African CO2 Emissions within a BRICS Countries Context the Energy Rebound Hypothesis," Working Papers 201751, University of Pretoria, Department of Economics.
  111. Mei Liao & Chao Ma & Dongpu Yao & Huizheng Liu, 2013. "Decomposition of embodied exergy flows in manufactured products and implications for carbon tariff policies," Asia Europe Journal, Springer, vol. 11(3), pages 265-283, September.
  112. Li, Jianglong & Sun, Shiqiang & Sharma, Disha & Ho, Mun Sing & Liu, Hongxun, 2023. "Tracking the drivers of global greenhouse gas emissions with spillover effects in the post-financial crisis era," Energy Policy, Elsevier, vol. 174(C).
  113. Edyta Sidorczuk-Pietraszko, 2020. "Spatial Differences in Carbon Intensity in Polish Households," Energies, MDPI, vol. 13(12), pages 1-21, June.
  114. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
  115. Zhiqian Yu & Dalia Streimikiene & Tomas Balezentis & Rimantas Dapkus, 2017. "Final Energy Consumption Trends and Drivers in Czech Republic and Latvia," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 19(46), pages 866-866, August.
  116. P. Fernández-González & M. Landajo & M.J. Presno, 2013. "Factors Influencing Changes In Aggregate Energy Consumption. An European Cross-Country Analysis," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 13(2), pages 18-30.
  117. Sun, J. W., 2003. "Dematerialization in Finnish energy use, 1972-1996," Energy Economics, Elsevier, vol. 25(1), pages 23-32, January.
  118. Robaina Alves, Margarita & Moutinho, Victor, 2013. "Decomposition analysis and Innovative Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over 1996–2009 in Portugal," Energy, Elsevier, vol. 57(C), pages 775-787.
  119. Holm, Stig-Olof & Englund, Göran, 2009. "Increased ecoefficiency and gross rebound effect: Evidence from USA and six European countries 1960-2002," Ecological Economics, Elsevier, vol. 68(3), pages 879-887, January.
  120. de Boer, P.M.C., 2008. "Energy decomposition analysis: the generalized Fisher index revisited," Econometric Institute Research Papers EI 2008-12, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  121. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2017. "Decomposing inequality in energy-related CO2 emissions by source and source increment: The roles of production and residential consumption," Energy Policy, Elsevier, vol. 107(C), pages 698-710.
  122. Vazquez, Luis & Luukkanen, Jyrki & Kaisti, Hanna & Käkönen, Mira & Majanne, Yrjö, 2015. "Decomposition analysis of Cuban energy production and use: Analysis of energy transformation for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 638-645.
  123. Albrecht, Johan & Francois, Delphine & Schoors, Koen, 2002. "A Shapley decomposition of carbon emissions without residuals," Energy Policy, Elsevier, vol. 30(9), pages 727-736, July.
  124. Ang, B. W. & Liu, F. L. & Chew, E. P., 2003. "Perfect decomposition techniques in energy and environmental analysis," Energy Policy, Elsevier, vol. 31(14), pages 1561-1566, November.
  125. Shrestha, Ram M. & Marpaung, Charles O.P., 2006. "Integrated resource planning in the power sector and economy-wide changes in environmental emissions," Energy Policy, Elsevier, vol. 34(18), pages 3801-3811, December.
  126. Lee, Kihoon & Oh, Wankeun, 2006. "Analysis of CO2 emissions in APEC countries: A time-series and a cross-sectional decomposition using the log mean Divisia method," Energy Policy, Elsevier, vol. 34(17), pages 2779-2787, November.
  127. Caroline Hambÿe & Bart Hertveldt & Bernhard Michel, 2018. "Does consistency with detailed national data matter for calculating carbon footprints with global multi-regional input–output tables? A comparative analysis for Belgium based on a structural decomposi," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-22, December.
  128. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
  129. Štreimikienė, Dalia & Balezentis, Tomas, 2016. "Kaya identity for analysis of the main drivers of GHG emissions and feasibility to implement EU “20–20–20” targets in the Baltic States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1108-1113.
  130. Das, Aparna & Paul, Saikat Kumar, 2013. "Changes in energy requirements of the residential sector in India between 1993–94 and 2006–07," Energy Policy, Elsevier, vol. 53(C), pages 27-40.
  131. Dequn Zhou & Xiao Liu & Peng Zhou & Qunwei Wang, 2017. "Decomposition Analysis of Aggregate Energy Consumption in China: An Exploration Using a New Generalized PDA Method," Sustainability, MDPI, vol. 9(5), pages 1-13, April.
  132. Cheng, Shulei & Wu, Yinyin & Chen, Hua & Chen, Jiandong & Song, Malin & Hou, Wenxuan, 2019. "Determinants of changes in electricity generation intensity among different power sectors," Energy Policy, Elsevier, vol. 130(C), pages 389-408.
  133. Mohcine Bakhat & Jaume Roselló, 2011. "Tourism Induced Contribution to Diesel Oil and Gasoline Consumption," Working Papers 05-2011, Economics for Energy.
  134. Paul, Shyamal & Bhattacharya, Rabindra Nath, 2004. "CO2 emission from energy use in India: a decomposition analysis," Energy Policy, Elsevier, vol. 32(5), pages 585-593, March.
  135. Henri L.F.M. de Groot & Cees A. Withagen & Zhou Minliang, 2001. "Dynamics of China's Regional Development and Pollution," Tinbergen Institute Discussion Papers 01-036/3, Tinbergen Institute.
  136. Lin, Boqiang & Long, Houyin, 2016. "Emissions reduction in China׳s chemical industry – Based on LMDI," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1348-1355.
  137. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
  138. Shang, Yizi & Lu, Shibao & Shang, Ling & Li, Xiaofei & Shi, Hongwang & Li, Wei, 2017. "Decomposition of industrial water use from 2003 to 2012 in Tianjin, China," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 53-61.
  139. Cansino, José M. & Román, Rocío & Ordóñez, Manuel, 2016. "Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis," Energy Policy, Elsevier, vol. 89(C), pages 150-159.
  140. Sun, J.W, 2001. "Energy demand in the fifteen European Union countries by 2010 —," Energy, Elsevier, vol. 26(6), pages 549-560.
  141. Michel Lioussis & Mònica Serrano, 2022. "Services trade contribution on global income generation (2000 - 2014) Abstract: This paper investigates the contribution of services trade to the variation of global income generation for the period o," UB School of Economics Working Papers 2022/423, University of Barcelona School of Economics.
  142. Xinlin Zhang & Yuan Zhao & Qi Sun & Changjian Wang, 2017. "Decomposition and Attribution Analysis of Industrial Carbon Intensity Changes in Xinjiang, China," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
  143. Zhang, Shuwei & Jiang, Kejun & Liu, Deshun, 2007. "Passenger transport modal split based on budgets and implication for energy consumption: Approach and application in China," Energy Policy, Elsevier, vol. 35(9), pages 4434-4443, September.
  144. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
  145. Jidong Kang & Tao Zhao & Xiaosong Ren & Tao Lin, 2012. "Using decomposition analysis to evaluate the performance of China’s 30 provinces in CO 2 emission reductions over 2005–2009," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 999-1013, November.
  146. Lise, Wietze, 2006. "Decomposition of CO2 emissions over 1980-2003 in Turkey," Energy Policy, Elsevier, vol. 34(14), pages 1841-1852, September.
  147. Banie Naser Outchiri & Jie He, 2020. "Technical gap, trade partners and product mix evolution: how trading with China affects global CO2 emissions," Cahiers de recherche 20-07, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
  148. Chen, Lei & Xu, Linyu & Velasco-Fernández, Raúl & Giampietro, Mario & Yang, Zhifeng, 2021. "Residential energy metabolic patterns in China: A study of the urbanization process," Energy, Elsevier, vol. 215(PA).
  149. Inglesi-Lotz, R. & Pouris, A., 2012. "Energy efficiency in South Africa: A decomposition exercise," Energy, Elsevier, vol. 42(1), pages 113-120.
  150. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
  151. Ebohon, Obas John & Ikeme, Anthony Jekwu, 2006. "Decomposition analysis of CO2 emission intensity between oil-producing and non-oil-producing sub-Saharan African countries," Energy Policy, Elsevier, vol. 34(18), pages 3599-3611, December.
  152. Xu, Yuan, 2013. "Using performance indicators to reduce cost uncertainty of China's CO2 mitigation goals," Energy Policy, Elsevier, vol. 53(C), pages 454-461.
  153. Yuanhong Tian & Matthias Ruth & Dajian Zhu, 2017. "Using the IPAT identity and decoupling analysis to estimate water footprint variations for five major food crops in China from 1978 to 2010," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2355-2375, December.
  154. Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2005. "Driving forces behind the stagnancy of China's energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change," Energy Policy, Elsevier, vol. 33(3), pages 319-335, February.
  155. Yousaf Raza, Muhammad & Lin, Boqiang, 2022. "Natural gas consumption, energy efficiency and low carbon transition in Pakistan," Energy, Elsevier, vol. 240(C).
  156. Kaivo-oja, Jari & Luukkanen, Jyrki, 2004. "The European Union balancing between CO2 reduction commitments and growth policies: decomposition analyses," Energy Policy, Elsevier, vol. 32(13), pages 1511-1530, September.
  157. Ye-Ning Wang & Qiang Zhou & Hao-Wei Wang, 2020. "Assessing Ecological Carrying Capacity in the Guangdong-Hong Kong-Macao Greater Bay Area Based on a Three-Dimensional Ecological Footprint Model," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
  158. Lingyun He & Fang Yin & Zhangqi Zhong & Zhihua Ding, 2017. "The impact of local government investment on the carbon emissions reduction effect: An empirical analysis of panel data from 30 provinces and municipalities in China," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-20, July.
  159. Yohei Yamaguchi & Naoki Yoshikawa & Koji Amano & Seiji Hashimoto, 2021. "Decomposition Analysis of Global Water Supply-Demand Balances Focusing on Food Production and Consumption," Sustainability, MDPI, vol. 13(14), pages 1-32, July.
  160. de Boer, Paul, 2009. "Generalized Fisher index or Siegel-Shapley decomposition?," Energy Economics, Elsevier, vol. 31(5), pages 810-814, September.
  161. Yuanhua Feng & Zhichao Guo & Christian Peitz, 2014. "A Tree-form Constant Market Share Model for Growth Causes in International Trade Based on Multi-level Classification," Journal of Industry, Competition and Trade, Springer, vol. 14(2), pages 207-228, June.
  162. Sun, J.W & Ang, B.W, 2000. "Some properties of an exact energy decomposition model," Energy, Elsevier, vol. 25(12), pages 1177-1188.
  163. Marcucci, Adriana & Fragkos, Panagiotis, 2015. "Drivers of regional decarbonization through 2100: A multi-model decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 111-124.
  164. Jennings, Mark & Ó Gallachóir, Brian P. & Schipper, Lee, 2013. "Irish passenger transport: Data refinements, international comparisons, and decomposition analysis," Energy Policy, Elsevier, vol. 56(C), pages 151-164.
  165. Yaoben Lin & Jianhui Yang & Yanmei Ye, 2018. "Spatial–Temporal Analysis of the Relationships between Agricultural Production and Use of Agrochemicals in Eastern China and Related Environmental and Political Implications (Based on Decoupling Appro," Sustainability, MDPI, vol. 10(4), pages 1-15, March.
  166. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
  167. K. Shironitta, 2016. "Global structural changes and their implication for territorial CO2 emissions," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-18, December.
  168. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
  169. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
  170. Margarida R. Alves & Victor Moutinho, 2013. "Decomposition analysis for energy-related CO2 emissions intensity over 1996-2009 in Portuguese Industrial Sectors," CEFAGE-UE Working Papers 2013_10, University of Evora, CEFAGE-UE (Portugal).
  171. Rina Wu & Jiquan Zhang & Yuhai Bao & Quan Lai & Siqin Tong & Youtao Song, 2016. "Decomposing the Influencing Factors of Industrial Sector Carbon Dioxide Emissions in Inner Mongolia Based on the LMDI Method," Sustainability, MDPI, vol. 8(7), pages 1-14, July.
  172. Shrestha, Ram M. & Marpaung, Charles O. P., 2005. "Supply- and demand-side effects of power sector planning with demand-side management options and SO2 emission constraints," Energy Policy, Elsevier, vol. 33(6), pages 815-825, April.
  173. Chen, Joyce J. & Pitt, Mark M., 2017. "Sources of change in the demand for energy by Indonesian households: 1980–2002," Energy Economics, Elsevier, vol. 61(C), pages 147-161.
  174. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
  175. Victor Moutinho & José Manuel Xavier & Pedro Miguel Silva, 2014. "Examining the energy-related CO2 emissions using Decomposition Approach in EU-15 before and after the Kyoto Protocol," CEFAGE-UE Working Papers 2014_17, University of Evora, CEFAGE-UE (Portugal).
  176. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
  177. Coccia, Mario, 2010. "Energy metrics for driving competitiveness of countries: Energy weakness magnitude, GDP per barrel and barrels per capita," Energy Policy, Elsevier, vol. 38(3), pages 1330-1339, March.
  178. Petrick, Sebastian, 2013. "Carbon efficiency, technology, and the role of innovation patterns: Evidence from German plant-level microdata," Kiel Working Papers 1833, Kiel Institute for the World Economy (IfW Kiel).
  179. Setyawan, Dhani, 2020. "Energy efficiency in Indonesia's manufacturing industry: a perspective from Log Mean Divisia Index decomposition analysis," MPRA Paper 111800, University Library of Munich, Germany, revised 15 Dec 2019.
  180. Wang, Yanqiu & Zhu, Zhiwei & Zhu, Zhaoge & Liu, Zhenbin, 2019. "Analysis of China's energy consumption changing using the Mean Rate of Change Index and the logarithmic mean divisia index," Energy, Elsevier, vol. 167(C), pages 275-282.
  181. Sun, J.W., 2000. "An analysis of the difference in CO2 emission intensity between Finland and Sweden," Energy, Elsevier, vol. 25(11), pages 1139-1146.
  182. Xing Zhou & Meihua Zhou & Ming Zhang, 2016. "Contrastive analyses of the influence factors of interprovincial carbon emission induced by industry energy in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1405-1433, April.
  183. Lin, Boqiang & Long, Houyin, 2014. "How to promote energy conservation in China’s chemical industry," Energy Policy, Elsevier, vol. 73(C), pages 93-102.
  184. Muhammad Yousaf Raza & Yingchao Chen & Songlin Tang, 2022. "Assessing the Green R&D Investment and Patent Generation in Pakistan towards CO 2 Emissions Reduction with a Novel Decomposition Framework," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
  185. Wang, H. & Zhou, P., 2018. "Assessing Global CO2 Emission Inequality From Consumption Perspective: An Index Decomposition Analysis," Ecological Economics, Elsevier, vol. 154(C), pages 257-271.
  186. Sun, Ya-Yen, 2016. "Decomposition of tourism greenhouse gas emissions: Revealing the dynamics between tourism economic growth, technological efficiency, and carbon emissions," Tourism Management, Elsevier, vol. 55(C), pages 326-336.
  187. Cornillie, Jan & Fankhauser, Samuel, 2004. "The energy intensity of transition countries," Energy Economics, Elsevier, vol. 26(3), pages 283-295, May.
  188. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
  189. Dhakal, Shobhakar, 2009. "Urban energy use and carbon emissions from cities in China and policy implications," Energy Policy, Elsevier, vol. 37(11), pages 4208-4219, November.
  190. Wood, Richard & Lenzen, Manfred, 2006. "Zero-value problems of the logarithmic mean divisia index decomposition method," Energy Policy, Elsevier, vol. 34(12), pages 1326-1331, August.
  191. Ussanarassamee, Arjaree & Bhattacharyya, Subhes C., 2005. "Changes in energy demand in Thai industry between 1981 and 2000," Energy, Elsevier, vol. 30(10), pages 1845-1857.
  192. Ditya Nurdianto & Budy Resosudarmo, 2011. "Prospects and challenges for an ASEAN energy integration policy," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 13(2), pages 103-127, June.
  193. Tao, Zaipu, 2010. "Scenarios of China's oil consumption per capita (OCPC) using a hybrid Factor Decomposition–System Dynamics (SD) simulation," Energy, Elsevier, vol. 35(1), pages 168-180.
  194. Shafiee, Shahriar & Topal, Erkan, 2008. "An econometrics view of worldwide fossil fuel consumption and the role of US," Energy Policy, Elsevier, vol. 36(2), pages 775-786, February.
  195. Wang, Qiang & Chen, Xi, 2015. "Energy policies for managing China’s carbon emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 470-479.
  196. Diakoulaki, D. & Mavrotas, G. & Orkopoulos, D. & Papayannakis, L., 2006. "A bottom-up decomposition analysis of energy-related CO2 emissions in Greece," Energy, Elsevier, vol. 31(14), pages 2638-2651.
  197. Jiali Huang & Robert E Ulanowicz, 2014. "Ecological Network Analysis for Economic Systems: Growth and Development and Implications for Sustainable Development," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-8, June.
  198. Rutger Hoekstra & Bernhard Michel & Sangwon Suh, 2016. "The emission cost of international sourcing: using structural decomposition analysis to calculate the contribution of international sourcing to CO 2 -emission growth," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 151-167, June.
  199. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
  200. Zhang, F. Q. & Ang, B. W., 2001. "Methodological issues in cross-country/region decomposition of energy and environment indicators," Energy Economics, Elsevier, vol. 23(2), pages 179-190, March.
  201. Seiji Hashimoto & Shigekazu Matsui & Yu Matsuno & Keisuke Nansai & Shinsuke Murakami & Yuichi Moriguchi, 2008. "What Factors Have Changed Japanese Resource Productivity?," Journal of Industrial Ecology, Yale University, vol. 12(5-6), pages 657-668, October.
  202. Chen, Jiandong & Xu, Chong & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2019. "Driving factors of CO2 emissions and inequality characteristics in China: A combined decomposition approach," Energy Economics, Elsevier, vol. 78(C), pages 589-597.
  203. Cahill, Caiman J. & Ó Gallachóir, Brian P., 2010. "Monitoring energy efficiency trends in European industry: Which top-down method should be used?," Energy Policy, Elsevier, vol. 38(11), pages 6910-6918, November.
  204. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
  205. Tao, Zhining & Hewings, Geoffrey & Donaghy, Kieran, 2010. "An economic analysis of Midwestern US criteria pollutant emissions trends from 1970 to 2000," Ecological Economics, Elsevier, vol. 69(8), pages 1666-1674, June.
  206. Fernández Vázquez, Esteban, 2006. "Path Based SDA with additional information of the dependent variable/Path Based SDA con información adicional de la variable dependiente," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 24, pages 645(29á)-64, Agosto.
  207. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
  208. Jin-Wei Wang & Hua Liao & Bao-Jun Tang & Ruo-Yu Ke & Yi-Ming Wei, 2017. "Is the CO2 Emissions Reduction from Scale Change, Structural Change or Technology Change? Evidence from Non-metallic Sector of 11 Major Economies in 1995-2009," CEEP-BIT Working Papers 101, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  209. Fan, Wei & Li, Li & Wang, Feiran & Li, Ding, 2020. "Driving factors of CO2 emission inequality in China: The role of government expenditure," China Economic Review, Elsevier, vol. 64(C).
  210. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
  211. Robi Kurniawan & Gregory P. Trencher & Achmed S. Edianto & Imam E. Setiawan & Kazuyo Matsubae, 2020. "Understanding the Multi-Faceted Drivers of Increasing Coal Consumption in Indonesia," Energies, MDPI, vol. 13(14), pages 1-22, July.
  212. Anne Owen & Richard Wood & John Barrett & Andrew Evans, 2016. "Explaining value chain differences in MRIO databases through structural path decomposition," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 243-272, June.
  213. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
  214. Hongjun Lei & Xunfeng Xia & Changjia Li & Beidou Xi, 2012. "Decomposition Analysis of Wastewater Pollutant Discharges in Industrial Sectors of China (2001–2009) Using the LMDI I Method," IJERPH, MDPI, vol. 9(6), pages 1-15, June.
  215. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
  216. Goh, Tian & Ang, B.W., 2018. "Quantifying CO2 emission reductions from renewables and nuclear energy – Some paradoxes," Energy Policy, Elsevier, vol. 113(C), pages 651-662.
  217. Bor, Yunchang Jeffrey, 2008. "Consistent multi-level energy efficiency indicators and their policy implications," Energy Economics, Elsevier, vol. 30(5), pages 2401-2419, September.
  218. Pan, Hengyu & Geng, Yong & Jiang, Ping & Dong, Huijuan & Sun, Lu & Wu, Rui, 2018. "An emergy based sustainability evaluation on a combined landfill and LFG power generation system," Energy, Elsevier, vol. 143(C), pages 310-322.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.