IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login

Citations for "Changes in energy consumption and energy intensity: A complete decomposition model"

by Sun, J. W.

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Ang, B. W. & Liu, F. L. & Chew, E. P., 2003. "Perfect decomposition techniques in energy and environmental analysis," Energy Policy, Elsevier, vol. 31(14), pages 1561-1566, November.
  2. Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
  3. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
  4. Sebastian Petrick, 2013. "Carbon Efficiency, Technology, and the Role of Innovation Patterns: Evidence from German Plant-Level Microdata," Kiel Working Papers 1833, Kiel Institute for the World Economy.
  5. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
  6. Muller, Adrian, 2006. "Putting decomposition of energy use and pollution on a firm footing - clarifications on the residual, zero and negative values and strategies to assess the performance of decomposition methods," Working Papers in Economics 213, University of Gothenburg, Department of Economics, revised 10 Aug 2007.
  7. Katerina PAPAGIANNAKI & Danae DIAKOULAKI, . "Decomposition Analysis of CO2 Emissions from Passenger Cars: The cases of Greece and Denmark," EcoMod2008 23800102, EcoMod.
  8. Holm, Stig-Olof & Englund, Göran, 2009. "Increased ecoefficiency and gross rebound effect: Evidence from USA and six European countries 1960-2002," Ecological Economics, Elsevier, vol. 68(3), pages 879-887, January.
  9. Margarida R. Alves & Victor Moutinho, 2013. "Decomposition analysis for energy-related CO2 emissions intensity over 1996-2009 in Portuguese Industrial Sectors," CEFAGE-UE Working Papers 2013_10, University of Evora, CEFAGE-UE (Portugal).
  10. Shafiee, Shahriar & Topal, Erkan, 2008. "An econometrics view of worldwide fossil fuel consumption and the role of US," Energy Policy, Elsevier, vol. 36(2), pages 775-786, February.
  11. Sudhakara Reddy, B. & Kumar Ray, Binay, 2011. "Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector," Energy Policy, Elsevier, vol. 39(11), pages 7234-7243.
  12. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
  13. Lin, Boqiang & Moubarak, Mohamed, 2013. "Decomposition analysis: Change of carbon dioxide emissions in the Chinese textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 389-396.
  14. Mei Liao & Chao Ma & Dongpu Yao & Huizheng Liu, 2013. "Decomposition of embodied exergy flows in manufactured products and implications for carbon tariff policies," Asia Europe Journal, Springer, vol. 11(3), pages 265-283, September.
  15. Sun, J. W., 2003. "Dematerialization in Finnish energy use, 1972-1996," Energy Economics, Elsevier, vol. 25(1), pages 23-32, January.
  16. de Boer, P.M.C., 2008. "Energy decomposition analysis: the generalized Fisher index revisited," Econometric Institute Research Papers EI 2008-12, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  17. Ussanarassamee, Arjaree & Bhattacharyya, Subhes C., 2005. "Changes in energy demand in Thai industry between 1981 and 2000," Energy, Elsevier, vol. 30(10), pages 1845-1857.
  18. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
  19. Ren, Shenggang & Fu, Xiang & Chen, XiaoHong, 2012. "Regional variation of energy-related industrial CO2 emissions mitigation in China," China Economic Review, Elsevier, vol. 23(4), pages 1134-1145.
  20. Andersson, Fredrik N.G. & Karpestam, Peter, 2013. "CO2 emissions and economic activity: Short- and long-run economic determinants of scale, energy intensity and carbon intensity," Energy Policy, Elsevier, vol. 61(C), pages 1285-1294.
  21. Diakoulaki, D. & Mavrotas, G. & Orkopoulos, D. & Papayannakis, L., 2006. "A bottom-up decomposition analysis of energy-related CO2 emissions in Greece," Energy, Elsevier, vol. 31(14), pages 2638-2651.
  22. Vicent Alcántara Escolano & Emilio Padilla Rosa, 2005. "Análisis De Las Emisiones De Co2 Y Sus Factores Explicativos En Las Diferentes Áreas Del Mundo," Working Papers wpdea0507, Department of Applied Economics at Universitat Autonoma of Barcelona.
  23. Shrestha, Ram M. & Marpaung, Charles O.P., 2006. "Integrated resource planning in the power sector and economy-wide changes in environmental emissions," Energy Policy, Elsevier, vol. 34(18), pages 3801-3811, December.
  24. Coccia, Mario, 2010. "Energy metrics for driving competitiveness of countries: Energy weakness magnitude, GDP per barrel and barrels per capita," Energy Policy, Elsevier, vol. 38(3), pages 1330-1339, March.
  25. Tol, Richard S.J. & Pacala, Stephen W. & Socolow, Robert H., 2009. "Understanding Long-Term Energy Use and Carbon Dioxide Emissions in the USA," Journal of Policy Modeling, Elsevier, vol. 31(3), pages 425-445, May.
  26. Roca, Jordi & Serrano, Monica, 2007. "Income growth and atmospheric pollution in Spain: An input-output approach," Ecological Economics, Elsevier, vol. 63(1), pages 230-242, June.
  27. Fernández Vázquez, Esteban, 2006. "Path Based SDA with additional information of the dependent variable/Path Based SDA con información adicional de la variable dependiente," Estudios de Economía Aplicada, Estudios de Economía Aplicada, vol. 24, pages 645 (29 pág, Agosto.
  28. Dhakal, Shobhakar, 2009. "Urban energy use and carbon emissions from cities in China and policy implications," Energy Policy, Elsevier, vol. 37(11), pages 4208-4219, November.
  29. Sun, J.W & Ang, B.W, 2000. "Some properties of an exact energy decomposition model," Energy, Elsevier, vol. 25(12), pages 1177-1188.
  30. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
  31. Yue-Jun Zhang & Ya-Bin Da, 2013. "Decomposing the changes of energy-related carbon emissions in China: evidence from the PDA approach," Natural Hazards, International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 1109-1122, October.
  32. Mohcine Bakhat & Jaume Roselló, 2011. "Tourism Induced Contribution to Diesel Oil and Gasoline Consumption," Working Papers 05-2011, Economics for Energy.
  33. Jennings, Mark & Ó Gallachóir, Brian P. & Schipper, Lee, 2013. "Irish passenger transport: Data refinements, international comparisons, and decomposition analysis," Energy Policy, Elsevier, vol. 56(C), pages 151-164.
  34. Ditya Nurdianto & Budy Resosudarmo, 2011. "Prospects and challenges for an ASEAN energy integration policy," Environmental Economics and Policy Studies, Society for Environmental Economics and Policy Studies - SEEPS, vol. 13(2), pages 103-127, June.
  35. Robaina Alves, Margarita & Moutinho, Victor, 2013. "Decomposition analysis and Innovative Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over 1996–2009 in Portugal," Energy, Elsevier, vol. 57(C), pages 775-787.
  36. Sun, J.W, 2001. "Energy demand in the fifteen European Union countries by 2010 —," Energy, Elsevier, vol. 26(6), pages 549-560.
  37. Ang, B.W. & Huang, H.C. & Mu, A.R., 2009. "Properties and linkages of some index decomposition analysis methods," Energy Policy, Elsevier, vol. 37(11), pages 4624-4632, November.
  38. Yuanhua Feng & Zhichao Guo & Christian Peitz & Xiangyong Tan, 2011. "A tree-form constant market share model for growth causes in international trade based on multi-level classification," Working Papers CIE 42, University of Paderborn, CIE Center for International Economics.
  39. Bor, Yunchang Jeffrey, 2008. "Consistent multi-level energy efficiency indicators and their policy implications," Energy Economics, Elsevier, vol. 30(5), pages 2401-2419, September.
  40. Tan, Hao & Sun, Aijun & Lau, Henry, 2013. "CO2 embodiment in China–Australia trade: The drivers and implications," Energy Policy, Elsevier, vol. 61(C), pages 1212-1220.
  41. Anthony M. Yezer & William Larson, 2014. "The Energy Implications of City Size and Density," Working Papers 2014-16, The George Washington University, Institute for International Economic Policy.
  42. Wietze LISE, 2005. "Decomposition of CO2 Emissions over 1980–2003 in Turkey," Working Papers 2005.24, Fondazione Eni Enrico Mattei.
  43. Agnolucci, Paolo & Ekins, Paul & Iacopini, Giorgia & Anderson, Kevin & Bows, Alice & Mander, Sarah & Shackley, Simon, 2009. "Different scenarios for achieving radical reduction in carbon emissions: A decomposition analysis," Ecological Economics, Elsevier, vol. 68(6), pages 1652-1666, April.
  44. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
  45. Dong, Gang & Mao, Xianqiang & Zhou, Ji & Zeng, An, 2013. "Carbon footprint accounting and dynamics and the driving forces of agricultural production in Zhejiang Province, China," Ecological Economics, Elsevier, vol. 91(C), pages 38-47.
  46. Pedregal, D.J. & Dejuán, O. & Gómez, N. & Tobarra, M.A., 2009. "Modelling demand for crude oil products in Spain," Energy Policy, Elsevier, vol. 37(11), pages 4417-4427, November.
  47. Tao, Zhining & Hewings, Geoffrey & Donaghy, Kieran, 2010. "An economic analysis of Midwestern US criteria pollutant emissions trends from 1970 to 2000," Ecological Economics, Elsevier, vol. 69(8), pages 1666-1674, June.
  48. Jidong Kang & Tao Zhao & Xiaosong Ren & Tao Lin, 2012. "Using decomposition analysis to evaluate the performance of China’s 30 provinces in CO 2 emission reductions over 2005–2009," Natural Hazards, International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 999-1013, November.
  49. Müller, Adrian, 2008. "Clarifying Poverty Decomposition," Proceedings of the German Development Economics Conference, Zurich 2008 30, Verein für Socialpolitik, Research Committee Development Economics.
  50. Lin, Boqiang & Long, Houyin, 2014. "Promoting carbon emissions reduction in China's chemical process industry," Energy, Elsevier, vol. 77(C), pages 822-830.
  51. Lin, Boqiang & Long, Houyin, 2014. "How to promote energy conservation in China’s chemical industry," Energy Policy, Elsevier, vol. 73(C), pages 93-102.
  52. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
  53. Cahill, Caiman J. & Ó Gallachóir, Brian P., 2010. "Monitoring energy efficiency trends in European industry: Which top-down method should be used?," Energy Policy, Elsevier, vol. 38(11), pages 6910-6918, November.
  54. Sun, J.W., 2000. "An analysis of the difference in CO2 emission intensity between Finland and Sweden," Energy, Elsevier, vol. 25(11), pages 1139-1146.
  55. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
  56. Korppoo, Anna & Luukkanen, Jyrki & Vehmas, Jarmo & Kinnunen, Miia, 2008. "What goes down must come up? Trends of industrial electricity use in the North-West of Russia," Energy Policy, Elsevier, vol. 36(9), pages 3588-3597, September.
  57. Ang, B.W. & Xu, X.Y. & Su, Bin, 2015. "Multi-country comparisons of energy performance: The index decomposition analysis approach," Energy Economics, Elsevier, vol. 47(C), pages 68-76.
  58. Henri L.F.M. de Groot & Cees A. Withagen & Zhou Minliang, 2001. "Dynamics of China's Regional Development and Pollution," Tinbergen Institute Discussion Papers 01-036/3, Tinbergen Institute.
  59. Xu, Yuan & Yang, Chi-Jen & Xuan, Xiaowei, 2013. "Engineering and optimization approaches to enhance the thermal efficiency of coal electricity generation in China," Energy Policy, Elsevier, vol. 60(C), pages 356-363.
  60. Albrecht, Johan & Francois, Delphine & Schoors, Koen, 2002. "A Shapley decomposition of carbon emissions without residuals," Energy Policy, Elsevier, vol. 30(9), pages 727-736, July.
  61. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
  62. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
  63. Zhang, F. Q. & Ang, B. W., 2001. "Methodological issues in cross-country/region decomposition of energy and environment indicators," Energy Economics, Elsevier, vol. 23(2), pages 179-190, March.
  64. P. Fernández-González & M. Landajo & M.J. Presno, 2013. "Factors Influencing Changes In Aggregate Energy Consumption. An European Cross-Country Analysis," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 13(2), pages 18-30.
  65. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27," Energy Policy, Elsevier, vol. 68(C), pages 576-584.
  66. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
  67. Sobrino, Natalia & Monzon, Andres, 2014. "The impact of the economic crisis and policy actions on GHG emissions from road transport in Spain," Energy Policy, Elsevier, vol. 74(C), pages 486-498.
  68. Cornillie, Jan & Fankhauser, Samuel, 2004. "The energy intensity of transition countries," Energy Economics, Elsevier, vol. 26(3), pages 283-295, May.
  69. Smit, Tycho A.B. & Hu, Jing & Harmsen, Robert, 2014. "Unravelling projected energy savings in 2020 of EU Member States using decomposition analyses," Energy Policy, Elsevier, vol. 74(C), pages 271-285.
  70. Luukkanen, J. & Kaivo-oja, J., 2002. "A comparison of Nordic energy and CO2 intensity dynamics in the years 1960–1997," Energy, Elsevier, vol. 27(2), pages 135-150.
  71. Zhang, Shuwei & Jiang, Kejun & Liu, Deshun, 2007. "Passenger transport modal split based on budgets and implication for energy consumption: Approach and application in China," Energy Policy, Elsevier, vol. 35(9), pages 4434-4443, September.
  72. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
  73. Wood, Richard & Lenzen, Manfred, 2006. "Zero-value problems of the logarithmic mean divisia index decomposition method," Energy Policy, Elsevier, vol. 34(12), pages 1326-1331, August.
  74. Paola Rocchi & Monica Serrano, 2011. "Environmental Structural Decomposition Analysis of Italian Emissions, 1995-2005," Working Papers in Economics 267, Universitat de Barcelona. Espai de Recerca en Economia.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.