IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i5p2257-d505434.html
   My bibliography  Save this article

Dynamic Relationships, Regional Differences, and Driving Mechanisms between Economic Development and Carbon Emissions from the Farming Industry: Empirical Evidence from Rural China

Author

Listed:
  • Wenxin Liu

    (College of Economics and Management, Northwest A&F University, Yangling 712100, China)

  • Ruifan Xu

    (College of Economics and Management, Northwest A&F University, Yangling 712100, China)

  • Yue Deng

    (College of Economics and Management, Northwest A&F University, Yangling 712100, China)

  • Weinan Lu

    (College of Economics and Management, Northwest A&F University, Yangling 712100, China)

  • Boyang Zhou

    (College of International Relations, Xi’an International Studies University, Xi’an 710061, China)

  • Minjuan Zhao

    (College of Economics and Management, Northwest A&F University, Yangling 712100, China)

Abstract

The coordinated development of the economy, resources, and environment is a key aspect of sustainable development. China’s rapid agricultural modernization has been accompanied by the continuous growth of rural economic aggregate and carbon emissions from the planting industry. However, the quantitative relationship between these two factors and its internal mechanism are not yet fully understood. In this paper, the Intergovernmental Panel on Climate Change (IPCC) method is used to calculate the carbon emissions of the planting industry in China from 1998–2019. Based on this, the Tapio decoupling analysis model was constructed to study the decoupling relationship between economic development and carbon emissions of the planting industry in China from 1998–2019 and the associated spatial and temporal evolution patterns. The effect of the complete decomposition model (without residuals), in terms of carbon emissions from the planting industry, on the process of economic development and its transmission mechanism are introduced. The results show that: (1) The carbon emissions of the planting industry in China increased with the economic development occurring from 1998–2005, where agricultural economic development was highly dependent on resource factors and the environment. The growth trend of carbon emissions of the planting industry slowed from 2006 to 2019, while economic development has gradually realized the decoupling of carbon emissions from the planting industry. (2) From 1998–2019, in Heilongjiang, Sichuan, and Hunan, the economic development was given priority, showing strong and negative decoupling with carbon emissions from farming. The economic development in most regions were given priority, showing strong decoupling with carbon emissions from farming. Up to 2019, decoupling was observed with a significant trend of spatial agglomeration. (3) Economic scale effects had a positive influence on the carbon emissions of the planting industry, while the technology effect and population effect had an inhibiting influence on the carbon emissions of the planting industry. The key policy implication of this paper is that improvement of the quality of economic development serves as the premise for the transformation of the economic development mode. It is necessary to reasonably regulate the economic growth rate and expansion scale, reduce resource consumption and pollutant emission technology, and to make full use of resources, in order to provide a basis for the formulation of reasonable emission reduction policies. An effective way to realize the sustainable development of the agricultural economy would be to improve the technical efficiency, control the population scale appropriately, and optimize the agricultural industrial structure.

Suggested Citation

  • Wenxin Liu & Ruifan Xu & Yue Deng & Weinan Lu & Boyang Zhou & Minjuan Zhao, 2021. "Dynamic Relationships, Regional Differences, and Driving Mechanisms between Economic Development and Carbon Emissions from the Farming Industry: Empirical Evidence from Rural China," IJERPH, MDPI, vol. 18(5), pages 1-22, February.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:5:p:2257-:d:505434
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/5/2257/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/5/2257/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    2. CARSON, RICHARd T. & JEON, YONGIL & McCUBBIN, DONALD R., 1997. "The relationship between air pollution emissions and income: US Data," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 433-450, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nihal Ahmed & Zeeshan Hamid & Khalil Ur Rehman & Piotr Senkus & Nisar Ahmed Khan & Aneta Wysokińska-Senkus & Barbara Hadryjańska, 2023. "Environmental Regulation, Fiscal Decentralization, and Agricultural Carbon Intensity: A Challenge to Ecological Sustainability Policies in the United States," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    2. Qin Shu & Yang Su & Hong Li & Feng Li & Yunjie Zhao & Chen Du, 2023. "Study on the Spatial Structure and Drivers of Agricultural Carbon Emission Efficiency in Belt and Road Initiative Countries," Sustainability, MDPI, vol. 15(13), pages 1-27, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vicent Alcántara Escolano & Emilio Padilla Rosa, 2005. "Análisis de las emisiones de CO2 y sus factores explicativos en las diferentes áreas del mundo," Revista de Economía Crítica, Asociación de Economía Crítica, vol. 4, pages 17-37.
    2. Shigemi Kagawa & Yuriko Goto & Sangwon Suh & Keisuke Nansai & Yuki Kudoh, 2012. "Accounting for Changes in Automobile Gasoline Consumption in Japan: 2000–2007," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 1(1), pages 1-27, December.
    3. Wang, Wenwen & Li, Man & Zhang, Ming, 2017. "Study on the changes of the decoupling indicator between energy-related CO2 emission and GDP in China," Energy, Elsevier, vol. 128(C), pages 11-18.
    4. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    5. David I.Stern, 2009. "Between estimates of the environmental Kuznets curve," Environmental Economics Research Hub Research Reports 0934, Environmental Economics Research Hub, Crawford School of Public Policy, The Australian National University.
    6. Wang, Xianzhu & Huang, He & Hong, Jingke & Ni, Danfei & He, Rongxiao, 2020. "A spatiotemporal investigation of energy-driven factors in China: A region-based structural decomposition analysis," Energy, Elsevier, vol. 207(C).
    7. Marcel Kohler, 2008. "The impact of international trade on changing patterns of energy use in South African industry," Working Papers 088, Economic Research Southern Africa.
    8. Baiardi Donatella, 2014. "Technological Progress and the Environmental Kuznets Curve in the Twenty Regions of Italy," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 14(4), pages 1-42, October.
    9. Meng, Bo & Wang, Jianguo & Andrew, Robbie & Xiao, Hao & Xue, Jinjun & Peters, Glen P., 2017. "Spatial spillover effects in determining China's regional CO2 emissions growth: 2007–2010," Energy Economics, Elsevier, vol. 63(C), pages 161-173.
    10. Luukkanen, Jyrki & Kaivo-oja, Jari, 2002. "ASEAN tigers and sustainability of energy use--decomposition analysis of energy and CO2 efficiency dynamics," Energy Policy, Elsevier, vol. 30(4), pages 281-292, March.
    11. Wei Sun & Hua Cai & Yuwei Wang, 2018. "Refined Laspeyres Decomposition-Based Analysis of Relationship between Economy and Electric Carbon Productivity from the Provincial Perspective—Development Mode and Policy," Energies, MDPI, vol. 11(12), pages 1-20, December.
    12. Halkos, George & Managi, Shunsuke, 2023. "New developments in the disciplines of environmental and resource economics," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 513-522.
    13. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    14. Xiaoyue Wang & Shuyao Wu & Shuangcheng Li, 2017. "Urban Metabolism of Three Cities in Jing-Jin-Ji Urban Agglomeration, China: Using the MuSIASEM Approach," Sustainability, MDPI, vol. 9(8), pages 1-21, August.
    15. Wang, Sophie Xuefei & Fu, Yu Benjamin & Zhang, Zhe George, 2015. "Population growth and the environmental Kuznets curve," China Economic Review, Elsevier, vol. 36(C), pages 146-165.
    16. Roca, Jordi & Serrano, Monica, 2007. "Income growth and atmospheric pollution in Spain: An input-output approach," Ecological Economics, Elsevier, vol. 63(1), pages 230-242, June.
    17. Jie HE, 2005. "Economic Determinants for China’s Industrial SO2 Emission: Reduced vs. Structural form and the role of international trade," Working Papers 200505, CERDI.
    18. Fernández, Esteban & Fernández, Paula, 2008. "An extension to Sun's decomposition methodology: The Path Based approach," Energy Economics, Elsevier, vol. 30(3), pages 1020-1036, May.
    19. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.
    20. Christian Haas and Karol Kempa, 2018. "Directed Technical Change and Energy Intensity Dynamics: Structural Change vs. Energy Efficiency," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:5:p:2257-:d:505434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.