IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i5p2257-d505434.html
   My bibliography  Save this article

Dynamic Relationships, Regional Differences, and Driving Mechanisms between Economic Development and Carbon Emissions from the Farming Industry: Empirical Evidence from Rural China

Author

Listed:
  • Wenxin Liu

    (College of Economics and Management, Northwest A&F University, Yangling 712100, China)

  • Ruifan Xu

    (College of Economics and Management, Northwest A&F University, Yangling 712100, China)

  • Yue Deng

    (College of Economics and Management, Northwest A&F University, Yangling 712100, China)

  • Weinan Lu

    (College of Economics and Management, Northwest A&F University, Yangling 712100, China)

  • Boyang Zhou

    (College of International Relations, Xi’an International Studies University, Xi’an 710061, China)

  • Minjuan Zhao

    (College of Economics and Management, Northwest A&F University, Yangling 712100, China)

Abstract

The coordinated development of the economy, resources, and environment is a key aspect of sustainable development. China’s rapid agricultural modernization has been accompanied by the continuous growth of rural economic aggregate and carbon emissions from the planting industry. However, the quantitative relationship between these two factors and its internal mechanism are not yet fully understood. In this paper, the Intergovernmental Panel on Climate Change (IPCC) method is used to calculate the carbon emissions of the planting industry in China from 1998–2019. Based on this, the Tapio decoupling analysis model was constructed to study the decoupling relationship between economic development and carbon emissions of the planting industry in China from 1998–2019 and the associated spatial and temporal evolution patterns. The effect of the complete decomposition model (without residuals), in terms of carbon emissions from the planting industry, on the process of economic development and its transmission mechanism are introduced. The results show that: (1) The carbon emissions of the planting industry in China increased with the economic development occurring from 1998–2005, where agricultural economic development was highly dependent on resource factors and the environment. The growth trend of carbon emissions of the planting industry slowed from 2006 to 2019, while economic development has gradually realized the decoupling of carbon emissions from the planting industry. (2) From 1998–2019, in Heilongjiang, Sichuan, and Hunan, the economic development was given priority, showing strong and negative decoupling with carbon emissions from farming. The economic development in most regions were given priority, showing strong decoupling with carbon emissions from farming. Up to 2019, decoupling was observed with a significant trend of spatial agglomeration. (3) Economic scale effects had a positive influence on the carbon emissions of the planting industry, while the technology effect and population effect had an inhibiting influence on the carbon emissions of the planting industry. The key policy implication of this paper is that improvement of the quality of economic development serves as the premise for the transformation of the economic development mode. It is necessary to reasonably regulate the economic growth rate and expansion scale, reduce resource consumption and pollutant emission technology, and to make full use of resources, in order to provide a basis for the formulation of reasonable emission reduction policies. An effective way to realize the sustainable development of the agricultural economy would be to improve the technical efficiency, control the population scale appropriately, and optimize the agricultural industrial structure.

Suggested Citation

  • Wenxin Liu & Ruifan Xu & Yue Deng & Weinan Lu & Boyang Zhou & Minjuan Zhao, 2021. "Dynamic Relationships, Regional Differences, and Driving Mechanisms between Economic Development and Carbon Emissions from the Farming Industry: Empirical Evidence from Rural China," IJERPH, MDPI, vol. 18(5), pages 1-22, February.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:5:p:2257-:d:505434
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/5/2257/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/5/2257/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    2. CARSON, RICHARd T. & JEON, YONGIL & McCUBBIN, DONALD R., 1997. "The relationship between air pollution emissions and income: US Data," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 433-450, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yihui Chen & Minjie Li, 2024. "How does the digital transformation of agriculture affect carbon emissions? Evidence from China’s provincial panel data," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-17, December.
    2. Nihal Ahmed & Zeeshan Hamid & Khalil Ur Rehman & Piotr Senkus & Nisar Ahmed Khan & Aneta Wysokińska-Senkus & Barbara Hadryjańska, 2023. "Environmental Regulation, Fiscal Decentralization, and Agricultural Carbon Intensity: A Challenge to Ecological Sustainability Policies in the United States," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    3. Lu, Man & Bai, Heju & Wu, Yiming, 2024. "Anti-corruption, credit supply, and agricultural economic development," Finance Research Letters, Elsevier, vol. 65(C).
    4. Qin Shu & Yang Su & Hong Li & Feng Li & Yunjie Zhao & Chen Du, 2023. "Study on the Spatial Structure and Drivers of Agricultural Carbon Emission Efficiency in Belt and Road Initiative Countries," Sustainability, MDPI, vol. 15(13), pages 1-27, July.
    5. Lulu Yang & Xieqihua Liu & Xiaolan Kang & Yuxia Zhu & Chaobao Wu & Bin Liu & Wen Li, 2025. "Coupling Agricultural Carbon Emission Efficiency and Economic Growth: Evidence from Jiangxi Province, China," Sustainability, MDPI, vol. 17(9), pages 1-28, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wenwen & Li, Man & Zhang, Ming, 2017. "Study on the changes of the decoupling indicator between energy-related CO2 emission and GDP in China," Energy, Elsevier, vol. 128(C), pages 11-18.
    2. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    3. Wang, Xianzhu & Huang, He & Hong, Jingke & Ni, Danfei & He, Rongxiao, 2020. "A spatiotemporal investigation of energy-driven factors in China: A region-based structural decomposition analysis," Energy, Elsevier, vol. 207(C).
    4. repec:rza:wpaper:088 is not listed on IDEAS
    5. Baiardi Donatella, 2014. "Technological Progress and the Environmental Kuznets Curve in the Twenty Regions of Italy," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 14(4), pages 1501-1542, October.
    6. Halkos, George & Managi, Shunsuke, 2023. "New developments in the disciplines of environmental and resource economics," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 513-522.
    7. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    8. Roca, Jordi & Serrano, Monica, 2007. "Income growth and atmospheric pollution in Spain: An input-output approach," Ecological Economics, Elsevier, vol. 63(1), pages 230-242, June.
    9. Fernández, Esteban & Fernández, Paula, 2008. "An extension to Sun's decomposition methodology: The Path Based approach," Energy Economics, Elsevier, vol. 30(3), pages 1020-1036, May.
    10. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.
    11. He Li & Kevin Lo & Mark Wang & Pingyu Zhang & Longyi Xue, 2016. "Industrial Energy Consumption in Northeast China under the Revitalisation Strategy: A Decomposition and Policy Analysis," Energies, MDPI, vol. 9(7), pages 1-13, July.
    12. Matias Piaggio & Emilio Padilla & Carolina Roman, 2015. "The long-run relationshiop between C02 emissions and economic activity in a small open economy: Uruguay 1882-2010," Working Papers wpdea1506, Department of Applied Economics at Universitat Autonoma of Barcelona.
    13. P. Fernández-González & M. Landajo & M.J. Presno, 2013. "Factors Influencing Changes In Aggregate Energy Consumption. An European Cross-Country Analysis," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 13(2), pages 18-30.
    14. repec:ebl:ecbull:v:17:y:2007:i:5:p:1-11 is not listed on IDEAS
    15. Chunhua Wang & Changdong Zhang & Yong Wang, 2020. "Environmental satisfaction among residents in Chinese cities," Empirical Economics, Springer, vol. 59(5), pages 2283-2301, November.
    16. Jidong Kang & Tao Zhao & Xiaosong Ren & Tao Lin, 2012. "Using decomposition analysis to evaluate the performance of China’s 30 provinces in CO 2 emission reductions over 2005–2009," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 999-1013, November.
    17. Tol, Richard S.J. & Pacala, Stephen W. & Socolow, Robert H., 2009. "Understanding Long-Term Energy Use and Carbon Dioxide Emissions in the USA," Journal of Policy Modeling, Elsevier, vol. 31(3), pages 425-445, May.
    18. Inglesi-Lotz, R. & Pouris, A., 2012. "Energy efficiency in South Africa: A decomposition exercise," Energy, Elsevier, vol. 42(1), pages 113-120.
    19. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
    20. Petrick, Sebastian, 2013. "Carbon efficiency, technology, and the role of innovation patterns: Evidence from German plant-level microdata," Kiel Working Papers 1833, Kiel Institute for the World Economy (IfW Kiel).
    21. Ditya Nurdianto & Budy Resosudarmo, 2011. "Prospects and challenges for an ASEAN energy integration policy," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 13(2), pages 103-127, June.
    22. Fabien Prieur, 2009. "The environmental Kuznets curve in a world of irreversibility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(1), pages 57-90, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:5:p:2257-:d:505434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.