IDEAS home Printed from https://ideas.repec.org/p/ind/igiwpp/2007-020.html
   My bibliography  Save this paper

Decomposition of energy consumption and energy intensity in Indian manufacturing industries

Author

Listed:
  • Binay Kumar Ray

    (Indira Gandhi Institute of Devleopment Research)

  • B. Sudhakara Reddy

    (Indira Gandhi Institute of Development Research)

Abstract

Of the total final energy consumption in India, the industrial sector accounts for about 37 percent, of which the manufacturing sector consumes about 66 percent (2004-2005 figures) with chemicals and petrochemicals, iron and steel, pulp and paper and cement industries being the largest energy users. In the recent past, energy intensity in the manufacturing sector has been decreasing. This decline is mainly due to fuel substitution away from coal in some of the sectors, most notably cement. While industrial production in developed countries stabilizes and declines, the industrial output in the developing world continues to expand owing to rising populations and catching up on economic growth. This can result in higher energy use - energy provided primarily by the combustion of fossil fuels - and thereby higher carbon-dioxide (CO2) emissions. Using the decomposition analysis we show that most of the intensity reductions are driven purely by structural effect rather than energy intensity.

Suggested Citation

  • Binay Kumar Ray & B. Sudhakara Reddy, 2007. "Decomposition of energy consumption and energy intensity in Indian manufacturing industries," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2007-020, Indira Gandhi Institute of Development Research, Mumbai, India.
  • Handle: RePEc:ind:igiwpp:2007-020
    as

    Download full text from publisher

    File URL: http://www.igidr.ac.in/pdf/publication/WP-2007-020.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rabindranath Bhattacharya & Shyamal Paul, 2001. "Sectoral Changes in Consumption and Intensity of Energy in India," Indian Economic Review, Department of Economics, Delhi School of Economics, vol. 36(2), pages 381-392, July.
    2. Choi, Ki-Hong & Ang, B. W., 2003. "Decomposition of aggregate energy intensity changes in two measures: ratio and difference," Energy Economics, Elsevier, vol. 25(6), pages 615-624, November.
    3. Sue J. Lin & Tzu C. Chang, 1996. "Decomposition of SO2, NO1 and CO2 Emissions from Energy Use of Major Economic Sectors in Taiwan," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 1-17.
    4. Lecocq, Franck & Crassous, Renaud, 2003. "International climate regime beyond 2012 - are quota allocation rules robust to uncertainty?," Policy Research Working Paper Series 3000, The World Bank.
    5. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    6. Percebois, Jacques, 1979. "Is the concept of energy intensity meaningful?," Energy Economics, Elsevier, vol. 1(3), pages 148-155, July.
    7. Edwards, Ron & Parikh, Ashok, 1978. "Intensities of energy usage an international and intertemporal comparison," Energy Policy, Elsevier, vol. 6(1), pages 66-75, March.
    8. Miketa, Asami, 2001. "Analysis of energy intensity developments in manufacturing sectors in industrialized and developing countries," Energy Policy, Elsevier, vol. 29(10), pages 769-775, August.
    9. Park, Se-Hark, 1992. "Decomposition of industrial energy consumption : An alternative method," Energy Economics, Elsevier, vol. 14(4), pages 265-270, October.
    10. Ang, BW, 1994. "Decomposition of industrial energy consumption : The energy intensity approach," Energy Economics, Elsevier, vol. 16(3), pages 163-174, July.
    11. Ang, B. W. & Lee, S. Y., 1994. "Decomposition of industrial energy consumption : Some methodological and application issues," Energy Economics, Elsevier, vol. 16(2), pages 83-92, April.
    12. Boyd, Gale A. & Hanson, Donald A. & Sterner, Thomas, 1988. "Decomposition of changes in energy intensity : A comparison of the Divisia index and other methods," Energy Economics, Elsevier, vol. 10(4), pages 309-312, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Haseeb & Sebastian Kot & Hafezali Iqbal Hussain & Leonardus WW Mihardjo & Piotr Saługa, 2020. "Modelling the Non-Linear Energy Intensity Effect Based on a Quantile-on-Quantile Approach: The Case of Textiles Manufacturing in Asian Countries," Energies, MDPI, vol. 13(9), pages 1-19, May.
    2. Sreekanth, K.J., 2016. "Review on integrated strategies for energy policy planning and evaluation of GHG mitigation alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 837-850.
    3. Chiang-Ching Tan & Syvester Tan, 2018. "Energy Consumption, CO2 Emissions and Economic Growth: A Causality Analysis for Malaysian Industrial Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 254-258.
    4. Bishwanath Goldar, 2010. "Energy Intensity of Indian Manufacturing Firms: Effect of Energy Prices, Technology and Firm Characteristics," Working Papers id:2483, eSocialSciences.
    5. Megha Jain & Simrit Kaur, 2023. "Determinants of Energy Intensity Trends in Indian Metallic Industry: A Firm-level Analysis," Vision, , vol. 27(3), pages 360-375, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sudhakara Reddy, B. & Kumar Ray, Binay, 2011. "Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector," Energy Policy, Elsevier, vol. 39(11), pages 7234-7243.
    2. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    3. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
    4. Chontanawat, Jaruwan & Wiboonchutikula, Paitoon & Buddhivanich, Atinat, 2014. "Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand," Energy, Elsevier, vol. 77(C), pages 171-182.
    5. Ditya Nurdianto & Budy Resosudarmo, 2011. "Prospects and challenges for an ASEAN energy integration policy," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 13(2), pages 103-127, June.
    6. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    7. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    8. Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
    9. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    10. Zhang, Zhong Xiang, 2001. "Why has the energy intensity fallen in China's industrial sector in the 1990s? : the relative importance of structural change and intensity change," CCSO Working Papers 200105, University of Groningen, CCSO Centre for Economic Research.
    11. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    12. Ang, B.W. & Huang, H.C. & Mu, A.R., 2009. "Properties and linkages of some index decomposition analysis methods," Energy Policy, Elsevier, vol. 37(11), pages 4624-4632, November.
    13. Paul, Shyamal & Bhattacharya, Rabindra Nath, 2004. "CO2 emission from energy use in India: a decomposition analysis," Energy Policy, Elsevier, vol. 32(5), pages 585-593, March.
    14. Shaista Alam & Mohammad Sabihuddin Butt, 2001. "Assessing Energy Consumption and Energy Intensity Changes in Pakistan: An Application of Complete Decomposition Model," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 40(2), pages 135-147.
    15. Ang, B. W., 1995. "Multilevel decomposition of industrial energy consumption," Energy Economics, Elsevier, vol. 17(1), pages 39-51, January.
    16. Bor, Yunchang Jeffrey, 2008. "Consistent multi-level energy efficiency indicators and their policy implications," Energy Economics, Elsevier, vol. 30(5), pages 2401-2419, September.
    17. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
    18. Sun, J.W & Ang, B.W, 2000. "Some properties of an exact energy decomposition model," Energy, Elsevier, vol. 25(12), pages 1177-1188.
    19. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
    20. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.

    More about this item

    JEL classification:

    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ind:igiwpp:2007-020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Shamprasad M. Pujar (email available below). General contact details of provider: https://edirc.repec.org/data/igidrin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.