IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01724339.html
   My bibliography  Save this paper

The role of production factor quality and technology diffusion in twentieth-century productivity growth

Author

Listed:
  • Antonin Bergeaud
  • Cette Gilbert

    (AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique, Centre de recherche de la Banque de France - Banque de France)

  • Rémy Lecat

Abstract

The twentieth century was a period of exceptional growth, driven mainly by the increase in total factor productivity (TFP). Using a database of 17 OECD countries over the 1890–2013 period, this paper integrates production factor quality into the measure of TFP, namely by factoring the level of education of the working-age population into the measure of labor and the age of equipment in the measure of capital stock. We then estimate how the diffusion of technology impacts the growth of this newly measured TFP through two emblematic general purpose technologies, electricity and information and communication technologies (ICT). Using growth decomposition methodology from instrumental variable estimates, this paper finds that education levels contribute most significantly to growth, while the age of capital makes a limited, although significant, contribution. Quality-adjusted production factors explain less than half of labor productivity growth in the largest countries except for Japan, where capital deepening posted a very large contribution. As a consequence, the "one big wave" of productivity growth (Gordon in Am Econ Rev 89(2):123–128, 1999), as well as the ICT productivity wave for the countries which experienced it, remains only partially explained by quality-adjusted factors, although education and technology diffusion contribute to explain the earlier wave in the USA in the 1930s–1940s. Finally, technology diffusion, as captured through our two general purpose technologies, leaves unexplained between 0.6 and 1 percentage point of yearly growth, as well as a large proportion of the two twentieth-century technology waves. These results both support a significant lag in the diffusion of general purpose technologies and raise further questions on a wider view on growth factors, including changes in the production process, management techniques and financing practices. Measurement problems may also contribute to the unexplained share of growth.

Suggested Citation

  • Antonin Bergeaud & Cette Gilbert & Rémy Lecat, 2018. "The role of production factor quality and technology diffusion in twentieth-century productivity growth," Post-Print hal-01724339, HAL.
  • Handle: RePEc:hal:journl:hal-01724339
    DOI: 10.1007/s11698-016-0149-2
    Note: View the original document on HAL open archive server: https://hal-amu.archives-ouvertes.fr/hal-01724339
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bresnahan, Timothy F. & Trajtenberg, M., 1995. "General purpose technologies 'Engines of growth'?," Journal of Econometrics, Elsevier, vol. 65(1), pages 83-108, January.
    2. Eric Hanushek & Ludger Woessmann, 2012. "Do better schools lead to more growth? Cognitive skills, economic outcomes, and causation," Journal of Economic Growth, Springer, vol. 17(4), pages 267-321, December.
    3. repec:ucp:bknber:9780226304557 is not listed on IDEAS
    4. Crafts, Nicholas & O'Rourke, Kevin Hjortshøj, 2013. "Twentieth Century Growth," CEPR Discussion Papers 9633, C.E.P.R. Discussion Papers.
    5. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, Oxford University Press, vol. 70(1), pages 65-94.
    6. Gilbert Cette & Yusuf Kocoglu & Jacques Mairesse, 2009. "Productivity Growth and Levels in France, Japan, the United Kingdom and the United States in the Twentieth Century," NBER Working Papers 15577, National Bureau of Economic Research, Inc.
    7. Barro, Robert J. & Lee, Jong-Wha, 1993. "International comparisons of educational attainment," Journal of Monetary Economics, Elsevier, vol. 32(3), pages 363-394, December.
    8. Bakker, Gerben & Crafts, Nicholas & Woltjer, Pieter, 2015. "A Vision of the Growth Process in a Technologically Progressive Economy: the United States, 1899-1941," CEPR Discussion Papers 10995, C.E.P.R. Discussion Papers.
    9. Christian Morrisson & Fabrice Murtin, 2009. "The Century of Education," Journal of Human Capital, University of Chicago Press, vol. 3(1), pages 1-42.
    10. Topel, Robert, 1999. "Labor markets and economic growth," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 44, pages 2943-2984, Elsevier.
    11. Paul-Antoine Beretti & Gilbert Cette, 2009. "Indirect ICT investment," Applied Economics Letters, Taylor & Francis Journals, vol. 16(17), pages 1713-1716.
    12. Daniel Cohen & Marcelo Soto, 2007. "Growth and human capital: good data, good results," Journal of Economic Growth, Springer, vol. 12(1), pages 51-76, March.
    13. Galor, Oded, 2005. "From Stagnation to Growth: Unified Growth Theory," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 4, pages 171-293, Elsevier.
    14. A. Bergeaud & G. Cette & R. Lecat, 2015. "GDP per capita in advanced countries over the 20th century," Working papers 549, Banque de France.
    15. Susanto Basu & John G. Fernald, 2008. "Information and communications technology as a general purpose technology: evidence from U.S. industry data," Economic Review, Federal Reserve Bank of San Francisco, pages 1-15.
    16. Mayer, Thierry & Zignago, Soledad, 2006. "Notes on CEPII’s distances measures," MPRA Paper 26469, University Library of Munich, Germany.
    17. Robert J. Barro, 1991. "Economic Growth in a Cross Section of Countries," The Quarterly Journal of Economics, Oxford University Press, vol. 106(2), pages 407-443.
    18. Jutta Bolt & Jan Luiten Zanden, 2014. "The Maddison Project: collaborative research on historical national accounts," Economic History Review, Economic History Society, vol. 67(3), pages 627-651, August.
    19. Jorgenson, Dale W., 1966. "The Embodiment Hypothesis," Scholarly Articles 3403063, Harvard University Department of Economics.
    20. Nicholas Bloom & Renata Lemos & Raffaella Sadun & Daniela Scur & John Van Reenen, 2014. "The New Empirical Economics of Management," NBER Working Papers 20102, National Bureau of Economic Research, Inc.
    21. Gittleman, Maury & ten Raa, Thijs & Wolff, Edward N., 2006. "The vintage effect in TFP-growth: An analysis of the age structure of capital," Structural Change and Economic Dynamics, Elsevier, vol. 17(3), pages 306-328, September.
    22. Mikael Lindahl & Alan B. Krueger, 2001. "Education for Growth: Why and for Whom?," Journal of Economic Literature, American Economic Association, vol. 39(4), pages 1101-1136, December.
    23. Trostel, Philip & Walker, Ian & Woolley, Paul, 2002. "Estimates of the economic return to schooling for 28 countries," Labour Economics, Elsevier, vol. 9(1), pages 1-16, February.
    24. Dale W. Jorgenson, 2001. "Information Technology and the U.S. Economy," American Economic Review, American Economic Association, vol. 91(1), pages 1-32, March.
    25. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    26. Angus Maddison, 2007. "Fluctuations in the momentum of growth within the capitalist epoch," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 1(2), pages 145-175, July.
    27. Wolff, Edward N, 1991. "Capital Formation and Productivity Convergence over the Long Term," American Economic Review, American Economic Association, vol. 81(3), pages 565-579, June.
    28. Diego Comin & Bart Hobijn, 2011. "Technology Diffusion and Postwar Growth," NBER Chapters, in: NBER Macroeconomics Annual 2010, volume 25, pages 209-246, National Bureau of Economic Research, Inc.
    29. Jacob A. Mincer, 1974. "Schooling, Experience, and Earnings," NBER Books, National Bureau of Economic Research, Inc, number minc74-1, June.
    30. Gilbert Cette & Christian Clerc & Lea Bresson, 2015. "Contribution of ICT Diffusion to Labour Productivity Growth: The United States, Canada, the Eurozone, and the United Kingdom, 1970-2013," International Productivity Monitor, Centre for the Study of Living Standards, vol. 28, pages 81-88, Spring.
    31. Cette, Gilbert & Mairesse, Jacques & Kocoglu, Yusuf, 2005. "ICT diffusion and potential output growth," Economics Letters, Elsevier, vol. 87(2), pages 231-234, May.
    32. Dale W. Jorgenson, 2001. "Information Technology and the U.S. Economy," American Economic Review, American Economic Association, vol. 91(1), pages 1-32, March.
    33. Claudia Goldin & Lawrence F. Katz, 1997. "Why the United States Led in Education: Lessons from Secondary School Expansion, 1910 to 1940," NBER Working Papers 6144, National Bureau of Economic Research, Inc.
    34. Daron Acemoglu, 1998. "Why Do New Technologies Complement Skills? Directed Technical Change and Wage Inequality," The Quarterly Journal of Economics, Oxford University Press, vol. 113(4), pages 1055-1089.
    35. Card, David, 1999. "The causal effect of education on earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 30, pages 1801-1863, Elsevier.
    36. Barro, Robert J. & Lee, Jong Wha, 2013. "A new data set of educational attainment in the world, 1950–2010," Journal of Development Economics, Elsevier, vol. 104(C), pages 184-198.
    37. Broadberry, S N & Crafts, N F R, 1990. "Explaining Anglo-American Productivity Differences in the Mid-Twentieth Century," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(4), pages 375-402, Special I.
    38. Dickson, Matt & Smith, Sarah, 2011. "What determines the return to education: An extra year or a hurdle cleared?," Economics of Education Review, Elsevier, vol. 30(6), pages 1167-1176.
    39. Basu Susanto & Fernald John, 2007. "Information and Communications Technology as a General-Purpose Technology: Evidence from US Industry Data," German Economic Review, De Gruyter, vol. 8(2), pages 146-173, May.
    40. Dale W. Jorgenson & Kevin J. Stiroh, 2000. "Raising the Speed Limit: U.S. Economic Growth in the Information Age," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 31(1), pages 125-236.
    41. Daron Acemoglu, 2002. "Directed Technical Change," Review of Economic Studies, Oxford University Press, vol. 69(4), pages 781-809.
    42. Basu, Susanto & Fernald, John G., 2002. "Aggregate productivity and aggregate technology," European Economic Review, Elsevier, vol. 46(6), pages 963-991, June.
    43. Gilbert Cette, 2014. "Does ICT Remain a Powerful Engine of Growth," Post-Print hal-01463929, HAL.
    44. Jovanovic, Boyan & Rousseau, Peter L., 2005. "General Purpose Technologies," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 18, pages 1181-1224, Elsevier.
    45. Gilbert Cette, 2014. "Presidential Conference Does ICT remain a powerful engine of growth?," Revue d'économie politique, Dalloz, vol. 124(4), pages 473-492.
    46. Antonin Bergeaud & Gilbert Cette & Rémy Lecat, 2016. "Productivity Trends in Advanced Countries between 1890 and 2012," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 62(3), pages 420-444, September.
    47. Madsen, Jakob B., 2010. "The anatomy of growth in the OECD since 1870," Journal of Monetary Economics, Elsevier, vol. 57(6), pages 753-767, September.
    48. Psacharopoulos, George, 1994. "Returns to investment in education: A global update," World Development, Elsevier, vol. 22(9), pages 1325-1343, September.
    49. Robert J. Barro, 2015. "Convergence and Modernisation," Economic Journal, Royal Economic Society, vol. 125(585), pages 911-942, June.
    50. Diego Comin & Martí Mestieri, 2018. "If Technology Has Arrived Everywhere, Why Has Income Diverged?," American Economic Journal: Macroeconomics, American Economic Association, vol. 10(3), pages 137-178, July.
    51. Devereux, Paul J. & Fan, Wen, 2011. "Earnings returns to the British education expansion," Economics of Education Review, Elsevier, vol. 30(6), pages 1153-1166.
    52. Robert E. Hall & Charles I. Jones, 1999. "Why do Some Countries Produce So Much More Output Per Worker than Others?," The Quarterly Journal of Economics, Oxford University Press, vol. 114(1), pages 83-116.
    53. Diego A. Comin & Bart Hobijn, 2009. "The CHAT Dataset," Harvard Business School Working Papers 10-035, Harvard Business School.
    54. Peter J. Klenow & Mark Bils, 2000. "Does Schooling Cause Growth?," American Economic Review, American Economic Association, vol. 90(5), pages 1160-1183, December.
    55. Baumol, William J, 1986. "Productivity Growth, Convergence, and Welfare: What the Long-run Data Show," American Economic Review, American Economic Association, vol. 76(5), pages 1072-1085, December.
    56. Jacob A. Mincer, 1974. "Schooling and Earnings," NBER Chapters, in: Schooling, Experience, and Earnings, pages 41-63, National Bureau of Economic Research, Inc.
    57. Madsen, Jakob B., 2010. "Growth and capital deepening since 1870: Is it all technological progress?," Journal of Macroeconomics, Elsevier, vol. 32(2), pages 641-656, June.
    58. N. Gregory Mankiw & David Romer & David N. Weil, 1992. "A Contribution to the Empirics of Economic Growth," The Quarterly Journal of Economics, Oxford University Press, vol. 107(2), pages 407-437.
    59. repec:oxf:wpaper:117.2 is not listed on IDEAS
    60. Angel de la Fuente, 2011. "Human Capital and Productivity," Working Papers 530, Barcelona Graduate School of Economics.
    61. Stephen D. Oliner & Daniel E. Sichel, 2000. "The Resurgence of Growth in the Late 1990s: Is Information Technology the Story?," Journal of Economic Perspectives, American Economic Association, vol. 14(4), pages 3-22, Fall.
    62. Susanto Basu & John G. Fernald, 2008. "Information and communications technology as a general purpose technology: evidence from U.S. industry data," Economic Review, Federal Reserve Bank of San Francisco, pages 1-15.
    63. Wolff, Edward N, 1996. "The Productivity Slowdown: The Culprit at Last? Follow-Up on Hulten and Wolff," American Economic Review, American Economic Association, vol. 86(5), pages 1239-1252, December.
    64. Jalava, Jukka & Pohjola, Matti, 2008. "The roles of electricity and ICT in economic growth: Case Finland," Explorations in Economic History, Elsevier, vol. 45(3), pages 270-287, July.
    65. Robert J. Gordon, 1999. "U.S. Economic Growth since 1870: One Big Wave?," American Economic Review, American Economic Association, vol. 89(2), pages 123-128, May.
    66. David Orr, 1999. "Book," Journal of Industrial Ecology, Yale University, vol. 3(4), pages 155-156, October.
    67. Lucas, Robert Jr., 1988. "On the mechanics of economic development," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 3-42, July.
    68. repec:eee:labchp:v:3:y:1999:i:pc:p:2943-2984 is not listed on IDEAS
    69. Jakob B. Madsen, 2014. "Human Capital and the World Technology Frontier," The Review of Economics and Statistics, MIT Press, vol. 96(4), pages 676-692, October.
    70. D. W. Jorgenson & Z. Griliches, 1967. "The Explanation of Productivity Change," Review of Economic Studies, Oxford University Press, vol. 34(3), pages 249-283.
    71. Bergeaud, A. & Cette, G. & Lecat, R., 2015. "Productivity trends from 1890 to 2012 in advanced countries," Rue de la Banque, Banque de France, issue 07, June..
    72. Lipsey, Richard G. & Carlaw, Kenneth I. & Bekar, Clifford T., 2005. "Economic Transformations: General Purpose Technologies and Long-Term Economic Growth," OUP Catalogue, Oxford University Press, number 9780199290895.
    73. O. Ashenfelter & D. Card (ed.), 1999. "Handbook of Labor Economics," Handbook of Labor Economics, Elsevier, edition 1, volume 3, number 3.
    74. Nicholas Bloom & Renata Lemos & Raffaella Sadun & Daniela Scur & John Reenen, 2014. "Jeea-Fbbva Lecture 2013: The New Empirical Economics Of Management," Journal of the European Economic Association, European Economic Association, vol. 12(4), pages 835-876, August.
    75. Roger Klein & Francis Vella, 2009. "Estimating the Return to Endogenous Schooling Decisions via Conditional Second Moments," Journal of Human Resources, University of Wisconsin Press, vol. 44(4).
    76. Benhabib, Jess & Spiegel, Mark M., 1994. "The role of human capital in economic development evidence from aggregate cross-country data," Journal of Monetary Economics, Elsevier, vol. 34(2), pages 143-173, October.
    77. Kander, Astrid & Enflo, Kerstin & Schön, Lennart, 2007. "In Defense of Electricity as a General Purpose Technology," Papers in Innovation Studies 2007/6, Lund University, CIRCLE - Centre for Innovation Research.
    78. Peter K. Clark, 1979. "Issues in the Analysis of Capital Formation and Productivity Growth," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 10(2), pages 423-446.
    79. Crafts, Nicholas, 2002. "The Solow Productivity Paradox in Historical Perspective," CEPR Discussion Papers 3142, C.E.P.R. Discussion Papers.
    80. Charles R. Hulten, 2000. "Total Factor Productivity: A Short Biography," NBER Working Papers 7471, National Bureau of Economic Research, Inc.
    81. Claudia Goldin & Lawrence F. Katz, 1998. "Human Capital and Social Capital: The Rise of Secondary Schooling in America, 1910 to 1940," NBER Working Papers 6439, National Bureau of Economic Research, Inc.
    82. Dale W. Jorgenson, 1966. "The Embodiment Hypothesis," Journal of Political Economy, University of Chicago Press, vol. 74, pages 1-1.
    83. Philippe Aghion & Steven Durlauf (ed.), 2005. "Handbook of Economic Growth," Handbook of Economic Growth, Elsevier, edition 1, volume 1, number 1.
    84. Gilbert Cette & Jimmy Lopez, 2012. "ICT demand behaviour: an international comparison," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 21(4), pages 397-410, June.
    85. Barro, Robert J. & Lee, Jong-Wha, 2015. "Education Matters: Global Schooling Gains from the 19th to the 21st Century," OUP Catalogue, Oxford University Press, number 9780199379231.
    86. Roger W. Ferguson & William L. Wascher, 2004. "Distinguished Lecture on Economics in Government: Lessons from Past Productivity Booms," Journal of Economic Perspectives, American Economic Association, vol. 18(2), pages 3-28, Spring.
    87. Kyriacou, George A., 1991. "Level and Growth Effects of Human Capital: A Cross-Country Study of the Convergence Hypothesis," Working Papers 91-26, C.V. Starr Center for Applied Economics, New York University.
    88. Diego A. Comin & Bart Hobijn & Emilie Rovito, 2006. "World Technology Usage Lags," NBER Working Papers 12677, National Bureau of Economic Research, Inc.
    89. Robert J. Gordon, 2013. "U.S. Productivity Growth: The Slowdown Has Returned After a Temporary Revival," International Productivity Monitor, Centre for the Study of Living Standards, vol. 25, pages 13-19, Spring.
    90. David, Paul A, 1990. "The Dynamo and the Computer: An Historical Perspective on the Modern Productivity Paradox," American Economic Review, American Economic Association, vol. 80(2), pages 355-361, May.
    91. Charles Edquist, 2001. "Innovation Policy in the Systems of Innovation Approach: Some Basic Principles," Advances in Spatial Science, in: Manfred M. Fischer & Josef Fröhlich (ed.), Knowledge, Complexity and Innovation Systems, chapter 3, pages 46-57, Springer.
    92. Robert J. Gordon, 2012. "Is U.S. Economic Growth Over? Faltering Innovation Confronts the Six Headwinds," NBER Working Papers 18315, National Bureau of Economic Research, Inc.
    93. Teresa Sanchis & Juan A. Sanchis-Llopis & Vicente Esteve & Antonio Cubel, 2015. "Total factor productivity, domestic knowledge accumulation, and international knowledge spillovers in the second half of the twentieth century," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 9(2), pages 209-233, May.
    94. Robert J. Gordon, 1990. "The Measurement of Durable Goods Prices," NBER Books, National Bureau of Economic Research, Inc, number gord90-1, June.
    95. Pritchett, Lant, 1996. "Where has all the education gone?," Policy Research Working Paper Series 1581, The World Bank.
    96. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, Oxford University Press, vol. 106(4), pages 979-1014.
    97. Alexander J. Field, 2003. "The Most Technologically Progressive Decade of the Century," American Economic Review, American Economic Association, vol. 93(4), pages 1399-1413, September.
    98. Gilbert Cette & Daniel Szpiro, 1989. "Une interprétation du ralentissement de la productivité industrielle au moment du second choc pétrolier," Économie et Prévision, Programme National Persée, vol. 87(1), pages 33-42.
    99. Marcelo Soto, 2002. "Rediscovering Education in Growth Regressions," OECD Development Centre Working Papers 202, OECD Publishing.
    100. Temple, Jonathan R. W., 2001. "Generalizations that aren't? Evidence on education and growth," European Economic Review, Elsevier, vol. 45(4-6), pages 905-918, May.
    101. Robert J. Gordon, 2014. "The Demise of U.S. Economic Growth: Restatement, Rebuttal, and Reflections," NBER Working Papers 19895, National Bureau of Economic Research, Inc.
    102. Eaton, Jonathan & Kortum, Samuel, 1999. "International Technology Diffusion: Theory and Measurement," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(3), pages 537-570, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melolinna, Marko & Tóth, Máté, 2019. "Trend and cycle shocks in Bayesian unobserved components models for UK productivity," Bank of England working papers 826, Bank of England.
    2. Cette, Gilbert & Devillard, Aurélien & Spiezia, Vincenzo, 2021. "The contribution of robots to productivity growth in 30 OECD countries over 1975–2019," Economics Letters, Elsevier, vol. 200(C).
    3. Gilbert Cette & Aurélien Devillard & Vincenzo Spiezia, 2022. "Growth Factors in Developed Countries: A 1960–2019 Growth Accounting Decomposition," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 64(2), pages 159-185, June.
    4. Antonin Bergeaud & Gilbert Cette & Rémy Lecat, 2020. "Convergence of GDP per capita in advanced countries over the twentieth century," Empirical Economics, Springer, vol. 59(5), pages 2509-2526, November.
    5. Anderton, Robert & Jarvis, Valerie & Labhard, Vincent & Morgan, Julian & Petroulakis, Filippos & Vivian, Lara, 2020. "Virtually everywhere? Digitalisation and the euro area and EU economies," Occasional Paper Series 244, European Central Bank.
    6. Nicholas Crafts & Pieter Woltjer, 2021. "Growth Accounting In Economic History: Findings, Lessons And New Directions," Journal of Economic Surveys, Wiley Blackwell, vol. 35(3), pages 670-696, July.
    7. Claire Alestra & Gilbert Cette & Valérie Chouard & Rémy Lecat, 2020. "Long-term growth impact of climate change and policies: the Advanced Climate Change Long-term (ACCL) scenario building model," AMSE Working Papers 2007, Aix-Marseille School of Economics, France.
    8. Consolo, Agostino & Cette, Gilbert & Bergeaud, Antonin & Labhard, Vincent & Osbat, Chiara & Kosekova, Stanimira & Anyfantaki, Sofia & Basso, Gaetano & Basso, Henrique & Bobeica, Elena & Ciapanna, Eman, 2021. "Digitalisation: channels, impacts and implications for monetary policy in the euro area," Occasional Paper Series 266, European Central Bank.
    9. Gilbert Cette & Rémy Lecat & Carole Ly-Marin, 2017. "Long-term growth and productivity projections in advanced countries," OECD Journal: Economic Studies, OECD Publishing, vol. 2016(1), pages 71-90.
    10. Zoltan J. Acs & Saul Estrin & Tomasz Mickiewicz & László Szerb, 2018. "Entrepreneurship, institutional economics, and economic growth: an ecosystem perspective," Small Business Economics, Springer, vol. 51(2), pages 501-514, August.
    11. Paul Bouche & Gilbert Cette & Rémy Lecat, 2021. "News from the frontier: Increased productivity dispersion across firms and factor reallocation," Working papers 846, Banque de France.
    12. Vincent Dropsy & Christian Montet, 2018. "Economic growth and productivity in French Polynesia: a long-term analysis," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Études Économiques (INSEE), issue 499, pages 5-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonin Bergeaud & Gilbert Cette & Rémy Lecat, 2016. "Productivity Trends in Advanced Countries between 1890 and 2012," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 62(3), pages 420-444, September.
    2. Marcelo Soto, 2006. "The Causal Effect of Education on Aggregate Income," Working Papers 0605, International Economics Institute, University of Valencia.
    3. Angel de la Fuente & Antonio Ciccone, 2003. "Human capital in a global and knowledge-based economy," UFAE and IAE Working Papers 562.03, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    4. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    5. A. Bergeaud & G. Cette & R. Lecat, 2015. "GDP per capita in advanced countries over the 20th century," Working papers 549, Banque de France.
    6. Wößmann, Ludger, 2000. "Specifying Human Capital: A Review, Some Extensions, and Development Effects," Kiel Working Papers 1007, Kiel Institute for the World Economy (IfW Kiel).
    7. Eric A. Hanushek & Ludger Woessmann, 2008. "The Role of Cognitive Skills in Economic Development," Journal of Economic Literature, American Economic Association, vol. 46(3), pages 607-668, September.
    8. Ralph Hippe & Roger Fouquet, 2015. "The human capital transition and the role of policy," GRI Working Papers 185, Grantham Research Institute on Climate Change and the Environment.
    9. Bergeaud, A. & Cette, G. & Lecat, R., 2015. "Productivity trends from 1890 to 2012 in advanced countries," Rue de la Banque, Banque de France, issue 07, June..
    10. Bloom, David E. & Canning, David & Kotschy, Rainer & Prettner, Klaus & Schünemann, Johannes, 2018. "Health and Economic Growth: Reconciling the Micro and Macro Evidence," IZA Discussion Papers 11940, Institute of Labor Economics (IZA).
    11. Antonio Ciccone & Elias Papaioannou, 2009. "Human Capital, the Structure of Production, and Growth," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 66-82, February.
    12. Marcelo Soto, 2006. "Estimating the Social Return on Schooling," Papers of the Annual IUE-SUNY Cortland Conference in Economics, in: Oguz Esen & Ayla Ogus (ed.), Proceedings of the Conference on Human and Economic Resources, pages 43-65, Izmir University of Economics.
    13. Klaus Prettner, 2012. "Public education, technological change and economic prosperity: semi-endogenous growth revisited," PGDA Working Papers 9012, Program on the Global Demography of Aging.
    14. Daren, Conrad, 2007. "Education and Economic Growth: Is There a Link?," MPRA Paper 18176, University Library of Munich, Germany, revised 2009.
    15. Capolupo, Rosa, 2009. "The New Growth Theories and Their Empirics after Twenty Years," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-72.
    16. Caselli, Francesco & Ciccone, Antonio, 2013. "The contribution of schooling in development accounting: Results from a nonparametric upper bound," Journal of Development Economics, Elsevier, vol. 104(C), pages 199-211.
    17. Uwe Sunde & Thomas Vischer, 2015. "Human Capital and Growth: Specification Matters," Economica, London School of Economics and Political Science, vol. 82(326), pages 368-390, April.
    18. Eric Hanushek & Ludger Woessmann, 2012. "Do better schools lead to more growth? Cognitive skills, economic outcomes, and causation," Journal of Economic Growth, Springer, vol. 17(4), pages 267-321, December.
    19. Nicola Gennaioli & Rafael La Porta & Florencio Lopez-de-Silanes & Andrei Shleifer, 2013. "Human Capital and Regional Development," The Quarterly Journal of Economics, Oxford University Press, vol. 128(1), pages 105-164.
    20. Jones, C.I., 2016. "The Facts of Economic Growth," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 3-69, Elsevier.

    More about this item

    Keywords

    Global history ; Productivity; Total factor productivity; Education; Technological change; Technology diffusion;
    All these keywords.

    JEL classification:

    • N10 - Economic History - - Macroeconomics and Monetary Economics; Industrial Structure; Growth; Fluctuations - - - General, International, or Comparative
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • E20 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01724339. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.