IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "Calculating Interval Forecasts: Reply"

by Chatfield, Chris

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as
in new window


  1. Bratu, Mihaela, 2013. "The Assessment And Improvement Of The Accuracy For The Forecast Intervals," Working Papers of Macroeconomic Modelling Seminar 132602, Institute for Economic Forecasting.
  2. Borbély, Dóra & Meier, Carsten-Patrick, 2003. "Macroeconomic interval forecasting: the case of assessing the risk of deflation in Germany," Kiel Working Papers 1153, Kiel Institute for the World Economy (IfW).
  3. Shang, Han Lin & Hyndman, Rob.J., 2011. "Nonparametric time series forecasting with dynamic updating," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1310-1324.
  4. Fildes, Robert & Stekler, Herman, 2002. "The state of macroeconomic forecasting," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 435-468, December.
  5. Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011. "Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals," International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901.
  6. Jing, Li, 2009. "Bootstrap prediction intervals for threshold autoregressive models," MPRA Paper 13086, University Library of Munich, Germany.
  7. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
  8. Ke Yang & Langnan Chen & Fengping Tian, 2015. "Realized Volatility Forecast of Stock Index Under Structural Breaks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(1), pages 57-82, January.
  9. Griffiths, William E. & Newton, Lisa S. & O'Donnell, Christopher J., 2001. "Predictive Densities for Shire Level Wheat Yield in Western Australia," 2001 Conference (45th), January 23-25, 2001, Adelaide 125645, Australian Agricultural and Resource Economics Society.
  10. Maheu, John M. & McCurdy, Thomas H., 2000. "Volatility dynamics under duration-dependent mixing," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 345-372, November.
  11. repec:eee:insuma:v:75:y:2017:i:c:p:166-179 is not listed on IDEAS
  12. James W. Taylor & Derek W. Bunn, 1999. "A Quantile Regression Approach to Generating Prediction Intervals," Management Science, INFORMS, vol. 45(2), pages 225-237, February.
  13. Guillaume Chevillon, 2007. "Direct Multi-Step Estimation And Forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 746-785, September.
  14. Charles, Amelie & Darne, Olivier & Kim, Jae, 2016. "Stock Return Predictability: Evaluation based on Prediction Intervals," MPRA Paper 70143, University Library of Munich, Germany.
  15. Francis X. Diebold & Todd A. Gunther & Anthony S. Tay, "undated". "Evaluating Density Forecasts," CARESS Working Papres 97-18, University of Pennsylvania Center for Analytic Research and Economics in the Social Sciences.
  16. Taylor, James W., 2007. "Forecasting daily supermarket sales using exponentially weighted quantile regression," European Journal of Operational Research, Elsevier, vol. 178(1), pages 154-167, April.
  17. Polanski, Arnold & Stoja, Evarist, 2012. "Efficient evaluation of multidimensional time-varying density forecasts, with applications to risk management," International Journal of Forecasting, Elsevier, vol. 28(2), pages 343-352.
  18. Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2015. "Nearest-neighbor methodology for prediction of intra-hour global horizontal and direct normal irradiances," Renewable Energy, Elsevier, vol. 80(C), pages 770-782.
  19. Kim, Jae H., 1999. "Asymptotic and bootstrap prediction regions for vector autoregression," International Journal of Forecasting, Elsevier, vol. 15(4), pages 393-403, October.
  20. Amendola, Alessandra & Christian, Francq, 2009. "Concepts and tools for nonlinear time series modelling," MPRA Paper 15140, University Library of Munich, Germany.
  21. Jae H. Kim, 2004. "Bias-corrected bootstrap prediction regions for vector autoregression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 141-154.
  22. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2005. "Bootstrap prediction intervals for power-transformed time series," International Journal of Forecasting, Elsevier, vol. 21(2), pages 219-235.
  23. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
  24. Taylor, James W. & Bunn, Derek W., 1999. "Investigating improvements in the accuracy of prediction intervals for combinations of forecasts: A simulation study," International Journal of Forecasting, Elsevier, vol. 15(3), pages 325-339, July.
  25. Li, Jing, 2011. "Bootstrap prediction intervals for SETAR models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 320-332, April.
  26. Quan, Hao & Srinivasan, Dipti & Khosravi, Abbas, 2014. "Uncertainty handling using neural network-based prediction intervals for electrical load forecasting," Energy, Elsevier, vol. 73(C), pages 916-925.
  27. Lee, Yun Shin & Scholtes, Stefan, 2014. "Empirical prediction intervals revisited," International Journal of Forecasting, Elsevier, vol. 30(2), pages 217-234.
  28. Cheng, R. & Pourahmadi, M., 1997. "Prediction with incomplete past and interpolation of missing values," Statistics & Probability Letters, Elsevier, vol. 33(4), pages 341-346, May.
  29. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1998. "Real-Time Multivariate Density Forecast Evaluation and Calibration: Monitoring the Risk of High-Frequency Returns on Foreign Exchange," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-079, New York University, Leonard N. Stern School of Business-.
  30. Mihaela Simionescu, 2014. "M1 and M2 indicators- new proposed measures for the global accuracy of forecast intervals," Computational Methods in Social Sciences (CMSS), "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences, vol. 2(1), pages 54-59, June.
  31. Griffiths, William E. & Newton, Lisa S. & O'Donnell, Christopher J., 2010. "Predictive densities for models with stochastic regressors and inequality constraints: Forecasting local-area wheat yield," International Journal of Forecasting, Elsevier, vol. 26(2), pages 397-412, April.
  32. repec:lan:wpaper:539557 is not listed on IDEAS
  33. Clements, Michael P. & Taylor, Nick, 2001. "Bootstrapping prediction intervals for autoregressive models," International Journal of Forecasting, Elsevier, vol. 17(2), pages 247-267.
  34. Farmer, J. Doyne & Lafond, François, 2016. "How predictable is technological progress?," Research Policy, Elsevier, vol. 45(3), pages 647-665.
  35. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2001. "Effects of parameter estimation on prediction densities: a bootstrap approach," International Journal of Forecasting, Elsevier, vol. 17(1), pages 83-103.
  36. repec:ntu:ntugeo:vol2-iss1-14-054 is not listed on IDEAS
  37. Harvey, David I. & Newbold, Paul, 2003. "The non-normality of some macroeconomic forecast errors," International Journal of Forecasting, Elsevier, vol. 19(4), pages 635-653.
  38. Wolfgang Nierhaus, 2017. "Wirtschaftskonjunktur 2016: Prognose und Wirklichkeit," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 70(02), pages 72-78, January.
  39. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601.
  40. Shang, Han Lin, 2017. "Functional time series forecasting with dynamic updating: An application to intraday particulate matter concentration," Econometrics and Statistics, Elsevier, vol. 1(C), pages 184-200.
  41. Wolfgang Nierhaus, 2013. "Konjunkturprognosen heute – Möglichkeiten und Probleme," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(01), pages 25-32, January.
  42. Ling He & Chenyi Hu, 2010. "Midpoint method and accuracy of variability forecasting," Empirical Economics, Springer, vol. 38(3), pages 705-715, June.
  43. repec:eee:eneeco:v:66:y:2017:i:c:p:228-237 is not listed on IDEAS
  44. Elena-Ivona DUMITRESCU & Christophe HURLIN & Jaouad MADKOUR, 2011. "Testing Interval Forecasts: A New GMM-based Test," LEO Working Papers / DR LEO 1549, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
  45. Chan, W.S & Cheung, S.H & Wu, K.H, 2004. "Multiple forecasts with autoregressive time series models: case studies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(3), pages 421-430.
  46. Hansen, Bruce E., 2006. "Interval forecasts and parameter uncertainty," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 377-398.
  47. Veiga, Helena & Ruiz, Esther & Gonçalves Mazzeu, Joao Henrique, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de Estadística.
  48. Li, Jing, 2011. "Bootstrap prediction intervals for SETAR models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 320-332.
  49. repec:lan:wpaper:470 is not listed on IDEAS
  50. Klaus Abberger, 2006. "Kernel smoothed prediction intervals for ARMA models," Statistical Papers, Springer, vol. 47(1), pages 1-15, January.
  51. Clements Michael P. & Hendry David F., 2008. "Economic Forecasting in a Changing World," Capitalism and Society, De Gruyter, vol. 3(2), pages 1-20, October.
  52. Yan, Jie & Liu, Yongqian & Han, Shuang & Wang, Yimei & Feng, Shuanglei, 2015. "Reviews on uncertainty analysis of wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1322-1330.
  53. Polanski, Arnold & Stoja, Evarist & Zhang, Ren, 2013. "Multidimensional risk and risk dependence," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3286-3294.
  54. He, Yaoyao & Liu, Rui & Li, Haiyan & Wang, Shuo & Lu, Xiaofen, 2017. "Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory," Applied Energy, Elsevier, vol. 185(P1), pages 254-266.
  55. Quan, Hao & Srinivasan, Dipti & Khambadkone, Ashwin M. & Khosravi, Abbas, 2015. "A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources," Applied Energy, Elsevier, vol. 152(C), pages 71-82.
  56. repec:lan:wpaper:425 is not listed on IDEAS
  57. Wolfgang Nierhaus, 2006. "Wirtschaftskonjunktur 2005: Prognose und Wirklichkeit," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 59(02), pages 37-43, January.
  58. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, Elsevier.
  59. Silvano Bordignon & Francesco Lisi, 2001. "Interval prediction for chaotic time series," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3-4), pages 117-140.
  60. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
  61. Stephen K. McNees & Lauren K. Fine, 1994. "Diversity, uncertainty, and accuracy of inflation forecasts," New England Economic Review, Federal Reserve Bank of Boston, issue Jul, pages 33-44.
  62. Snyder, Ralph D. & Koehler, Anne B. & Hyndman, Rob J. & Ord, J. Keith, 2004. "Exponential smoothing models: Means and variances for lead-time demand," European Journal of Operational Research, Elsevier, vol. 158(2), pages 444-455, October.
  63. Li, Yushu & Andersson, Jonas, 2014. "A Likelihood Ratio and Markov Chain Based Method to Evaluate Density Forecasting," Discussion Papers 2014/12, Department of Business and Management Science, Norwegian School of Economics.
  64. Ling He & Chenyi Hu, 2009. "Impacts of Interval Computing on Stock Market Variability Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 33(3), pages 263-276, April.
  65. Dhaoui, Elwardi, 2015. "Climat des Affaires et Compétitivité de l’Entreprise Tunisienne Après la Révolution : Analyses et Perspectives
    [Business Climate and Competitiveness of the Tunisian Enterprise After the Revolution:
    ," MPRA Paper 70675, University Library of Munich, Germany.
  66. repec:lan:wpaper:413 is not listed on IDEAS
  67. Melard, G. & Pasteels, J. -M., 2000. "Automatic ARIMA modeling including interventions, using time series expert software," International Journal of Forecasting, Elsevier, vol. 16(4), pages 497-508.
  68. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
  69. Wolfgang Nierhaus, 2015. "Wirtschaftskonjunktur 2014: Prognose und Wirklichkeit," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 68(02), pages 43-49, January.
  70. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
  71. Wai-Sum Chan, 1999. "Exact joint forecast regions for vector autoregressive models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(1), pages 35-44.
  72. Roberto Buizza & James W. Taylor, 2004. "A comparison of temperature density forecasts from GARCH and atmospheric models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(5), pages 337-355.
  73. Wolfgang Nierhaus, 2016. "Wirtschaftskonjunktur 2015: Prognose und Wirklichkeit," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 69(03), pages 34-40, February.
  74. Dick van Dijk & Philip Hans Franses & Michael P. Clements & Jeremy Smith, 2003. "On SETAR non-linearity and forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 359-375.
  75. Chen, Yi-Hsuan & Tu, Anthony H., 2013. "Estimating hedged portfolio value-at-risk using the conditional copula: An illustration of model risk," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 514-528.
  76. Andrés Alonso & Daniel Peña & Juan Romo, 2006. "Introducing model uncertainty by moving blocks bootstrap," Statistical Papers, Springer, vol. 47(2), pages 167-179, March.
  77. Clements, Michael P. & Kim, Jae H., 2007. "Bootstrap prediction intervals for autoregressive time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3580-3594, April.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.