IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v26yi2p397-412.html
   My bibliography  Save this article

Predictive densities for models with stochastic regressors and inequality constraints: Forecasting local-area wheat yield

Author

Listed:
  • Griffiths, William E.
  • Newton, Lisa S.
  • O'Donnell, Christopher J.

Abstract

Forecasts from regression models are frequently made conditional on a set of values for the regressor variables. We describe and illustrate how to obtain forecasts when some of those regressors are stochastic and their values have not yet been realized. The forecasting device is a Bayesian predictive density which accommodates variability from an unknown error term, uncertainty from unknown coefficients, and uncertainty from unknown stochastic regressors. We illustrate how the predictive density of a forecast changes as more regressors are observed and therefore fewer are unobserved. An example where the local-area wheat yield depends on the rainfall during three periods-germination, growing and flowering-is used to illustrate the methods. Both a noninformative prior and a prior with inequality restrictions on the regression coefficients are considered. The results show how the predictive density changes as more rainfall information becomes available.

Suggested Citation

  • Griffiths, William E. & Newton, Lisa S. & O'Donnell, Christopher J., 2010. "Predictive densities for models with stochastic regressors and inequality constraints: Forecasting local-area wheat yield," International Journal of Forecasting, Elsevier, vol. 26(2), pages 397-412, April.
  • Handle: RePEc:eee:intfor:v:26:y::i:2:p:397-412
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(09)00209-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geweke, John, 1986. "Exact Inference in the Inequality Constrained Normal Linear Regression Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(2), pages 127-141, April.
    2. Barnett, William A. & Serletis, Apostolos, 2008. "Consumer preferences and demand systems," Journal of Econometrics, Elsevier, vol. 147(2), pages 210-224, December.
    3. C. L Chua & W. E. Griffiths & C. J O'Donnell, 2001. "Bayesian Model Averaging in Consumer Demand Systems with Inequality Constraints," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 49(3), pages 269-291, November.
    4. Chatfield, Chris, 1993. "Calculating Interval Forecasts: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 143-144, April.
    5. Ryan, David L & Wales, Terence J, 1998. "A Simple Method for Imposing Local Curvature in Some Flexible Consumer-Demand Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 331-338, July.
    6. Lam, J. -P. & Veall, M. R., 2002. "Bootstrap prediction intervals for single period regression forecasts," International Journal of Forecasting, Elsevier, vol. 18(1), pages 125-130.
    7. Gallant, A. Ronald & Golub, Gene H., 1984. "Imposing curvature restrictions on flexible functional forms," Journal of Econometrics, Elsevier, vol. 26(3), pages 295-321, December.
    8. Lance Fortnow & Rakesh V. Vohra, 2009. "The Complexity of Forecast Testing," Econometrica, Econometric Society, vol. 77(1), pages 93-105, January.
    9. Griffiths, William E. & O'Donnell, Christopher J. & Cruz, Agustina Tan, 2000. "Imposing regularity conditions on a system of cost and factor share equations," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 44(1), March.
    10. McCausland, William J., 2008. "On Bayesian analysis and computation for functions with monotonicity and curvature restrictions," Journal of Econometrics, Elsevier, vol. 142(1), pages 484-507, January.
    11. Feldstein, Martin S, 1971. "The Error of Forecast in Econometric Models when the Forecast-Period Exogenous Variables are Stochastic," Econometrica, Econometric Society, vol. 39(1), pages 55-60, January.
    12. Chatfield, Chris, 1993. "Calculating Interval Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 121-135, April.
    13. Griffiths, William E & Chotikapanich, Duangkamon, 1997. "Bayesian Methodology for Imposing Inequality Constraints on a Linear Expenditure System with Demographic Factors," Australian Economic Papers, Wiley Blackwell, vol. 36(69), pages 321-341, December.
    14. Barnett, William A. & Serletis, Apostolos, 2008. "Measuring Consumer Preferences and Estimating Demand Systems," MPRA Paper 12318, University Library of Munich, Germany.
    15. Feng, Guohua & Serletis, Apostolos, 2008. "Productivity trends in U.S. manufacturing: Evidence from the NQ and AIM cost functions," Journal of Econometrics, Elsevier, vol. 142(1), pages 281-311, January.
    16. Coelli, Tim J., 1992. "Forecasting Wheat Production Using Shire Level Data," 1992 Conference (36th), February 10-13, 1992, Canberra, Australia 146430, Australian Agricultural and Resource Economics Society.
    17. Andrew N. Kleit & Dek Terrell, 2001. "Measuring Potential Efficiency Gains From Deregulation Of Electricity Generation: A Bayesian Approach," The Review of Economics and Statistics, MIT Press, vol. 83(3), pages 523-530, August.
    18. John R. Knight & C.F. Sirmans & Alan E. Gelfand & Sujit K. Ghosh, 1998. "Analyzing Real Estate Data Problems Using the Gibbs Sampler," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 26(3), pages 469-492.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:26:y::i:2:p:397-412. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.