IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v77y2009i1p93-105.html
   My bibliography  Save this article

The Complexity of Forecast Testing

Author

Listed:
  • Lance Fortnow
  • Rakesh V. Vohra

Abstract

Consider a weather forecaster predicting a probability of rain for the next day. We consider tests that, given a finite sequence of forecast predictions and outcomes, will either pass or fail the forecaster. Sandroni showed that any test which passes a forecaster who knows the distribution of nature can also be probabilistically passed by a forecaster with no knowledge of future events. We look at the computational complexity of such forecasters and exhibit a linear-time test and distribution of nature such that any forecaster without knowledge of the future who can fool the test must be able to solve computationally difficult problems. Thus, unlike Sandroni's work, a computationally efficient forecaster cannot always fool this test independently of nature. Copyright 2009 The Econometric Society.

Suggested Citation

  • Lance Fortnow & Rakesh V. Vohra, 2009. "The Complexity of Forecast Testing," Econometrica, Econometric Society, vol. 77(1), pages 93-105, January.
  • Handle: RePEc:ecm:emetrp:v:77:y:2009:i:1:p:93-105
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.3982/ECTA7163
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    2. Park, Joon Y. & Phillips, Peter C.B., 1999. "Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 15(03), pages 269-298, June.
    3. Elliott, Graham, 1999. "Efficient Tests for a Unit Root When the Initial Observation Is Drawn from Its Unconditional Distribution," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(3), pages 767-783, August.
    4. Yoosoon Chang & Joon Y. Park, 2003. "A Sieve Bootstrap For The Test Of A Unit Root," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(4), pages 379-400, July.
    5. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    6. Nankervis, John C & Savin, N E, 1996. "The Level and Power of the Bootstrap t Test in the AR(1) Model with Trend," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 161-168, April.
    7. Einmahl, Uwe, 1989. "Extensions of results of Komlós, Major, and Tusnády to the multivariate case," Journal of Multivariate Analysis, Elsevier, vol. 28(1), pages 20-68, January.
    8. Evans, G B A & Savin, N E, 1984. "Testing for Unit Roots: 2," Econometrica, Econometric Society, vol. 52(5), pages 1241-1269, September.
    9. Courbot, B., 2001. "Rates of convergence in the functional CLT for multidimensional continuous time martingales," Stochastic Processes and their Applications, Elsevier, vol. 91(1), pages 57-76, January.
    10. Donald W.K. Andrews & Moshe Buchinsky, 1997. "On the Number of Bootstrap Repetitions for Bootstrap Standard Errors, Confidence Intervals, and Tests," Cowles Foundation Discussion Papers 1141R, Cowles Foundation for Research in Economics, Yale University.
    11. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    12. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    13. Peter C.B. Phillips & Victor Solo, 1989. "Asymptotics for Linear Processes," Cowles Foundation Discussion Papers 932, Cowles Foundation for Research in Economics, Yale University.
    14. Horowitz, Joel L., 2001. "The Bootstrap," Handbook of Econometrics,in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 52, pages 3159-3228 Elsevier.
    15. Park, Joon Y., 2002. "An Invariance Principle For Sieve Bootstrap In Time Series," Econometric Theory, Cambridge University Press, vol. 18(02), pages 469-490, April.
    16. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    17. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    18. Evans, G B A & Savin, N E, 1981. "Testing for Unit Roots: 1," Econometrica, Econometric Society, vol. 49(3), pages 753-779, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dean Foster & Rakesh Vohra, 2011. "Calibration: Respice, Adspice, Prospice," Discussion Papers 1537, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    2. Griffiths, William E. & Newton, Lisa S. & O'Donnell, Christopher J., 2010. "Predictive densities for models with stochastic regressors and inequality constraints: Forecasting local-area wheat yield," International Journal of Forecasting, Elsevier, vol. 26(2), pages 397-412, April.
    3. Olszewski, Wojciech, 2015. "Calibration and Expert Testing," Handbook of Game Theory with Economic Applications, Elsevier.
    4. Hu, Tai Wei & Shmaya, Eran, 2013. "Expressible inspections," Theoretical Economics, Econometric Society, vol. 8(2), May.
    5. Ronen Gradwohl & Eran Shmaya, 2013. "Tractable Falsifiability," Discussion Papers 1564, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    6. Al-Najjar, Nabil I. & Sandroni, Alvaro & Smorodinsky, Rann & Weinstein, Jonathan, 2010. "Testing theories with learnable and predictive representations," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2203-2217, November.
    7. Marinovic, Iván & Ottaviani, Marco & Sorensen, Peter, 2013. "Forecasters’ Objectives and Strategies," Handbook of Economic Forecasting, Elsevier.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:77:y:2009:i:1:p:93-105. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.