IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v45y1999i2p225-237.html
   My bibliography  Save this article

A Quantile Regression Approach to Generating Prediction Intervals

Author

Listed:
  • James W. Taylor

    (London Business School, Sussex Place, Regents Park, London NW1 4SA, United Kingdom)

  • Derek W. Bunn

    (London Business School, Sussex Place, Regents Park, London NW1 4SA, United Kingdom)

Abstract

Exponential smoothing methods do not involve a formal procedure for identifying the underlying data generating process. The issue is then whether prediction intervals should be estimated by a theoretical approach, with the assumption that the method is optimal in some sense, or by an empirical procedure. In this paper we present an alternative hybrid approach which applies quantile regression to the empirical fit errors to produce forecast error quantile models. These models are functions of the lead time, as suggested by the theoretical variance expressions. In addition to avoiding the optimality assumption, the method is nonparametric, so there is no need for the common normality assumption. Application of the new approach to simple, Holt's, and damped Holt's exponential smoothing, using simulated and real data sets, gave encouraging results.

Suggested Citation

  • James W. Taylor & Derek W. Bunn, 1999. "A Quantile Regression Approach to Generating Prediction Intervals," Management Science, INFORMS, vol. 45(2), pages 225-237, February.
  • Handle: RePEc:inm:ormnsc:v:45:y:1999:i:2:p:225-237
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.45.2.225
    Download Restriction: no

    References listed on IDEAS

    as
    1. Yar, Mohammed & Chatfield, Chris, 1990. "Prediction intervals for the Holt-Winters forecasting procedure," International Journal of Forecasting, Elsevier, vol. 6(1), pages 127-137.
    2. Chatfield, Chris, 1993. "Calculating Interval Forecasts: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 143-144, April.
    3. S. A. Roberts, 1982. "A General Class of Holt-Winters Type Forecasting Models," Management Science, INFORMS, vol. 28(7), pages 808-820, July.
    4. Chatfield, Chris, 1993. "Calculating Interval Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 121-135, April.
    5. Wilpen L. Gorr & Cheng Hsu, 1985. "An Adaptive Filtering Procedure for Estimating Regression Quantiles," Management Science, INFORMS, vol. 31(8), pages 1019-1029, August.
    6. Rosas, A. Lorena & Guerrero, Victor M., 1994. "Restricted forecasts using exponential smoothing techniques," International Journal of Forecasting, Elsevier, vol. 10(4), pages 515-527, December.
    7. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    8. Chatfield, Chris & Yar, Mohammed, 1991. "Prediction intervals for multiplicative Holt-Winters," International Journal of Forecasting, Elsevier, vol. 7(1), pages 31-37, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011. "Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals," International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901.
    2. Taylor, James W., 2003. "Exponential smoothing with a damped multiplicative trend," International Journal of Forecasting, Elsevier, vol. 19(4), pages 715-725.
    3. Cai, Zongwu & Xu, Xiaoping, 2009. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
    4. Dong Jin Lee, 2009. "Testing Parameter Stability in Quantile Models: An Application to the U.S. Inflation Process," Working papers 2009-26, University of Connecticut, Department of Economics.
    5. Farmer, J. Doyne & Lafond, Fran├žois, 2016. "How predictable is technological progress?," Research Policy, Elsevier, vol. 45(3), pages 647-665.
    6. Chi Ming Wong & Lei Lam Olivia Ting, 2016. "A Quantile Regression Approach to the Multiple Period Value at Risk Estimation," Journal of Economics and Management, College of Business, Feng Chia University, Taiwan, vol. 12(1), pages 1-35, February.
    7. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
    8. Trapero, Juan R., 2016. "Calculation of solar irradiation prediction intervals combining volatility and kernel density estimates," Energy, Elsevier, vol. 114(C), pages 266-274.
    9. Galvao Jr., Antonio F., 2011. "Quantile regression for dynamic panel data with fixed effects," Journal of Econometrics, Elsevier, vol. 164(1), pages 142-157, September.
    10. Taylor, James W., 2007. "Forecasting daily supermarket sales using exponentially weighted quantile regression," European Journal of Operational Research, Elsevier, vol. 178(1), pages 154-167, April.
    11. Taylor, James W. & Jeon, Jooyoung, 2015. "Forecasting wind power quantiles using conditional kernel estimation," Renewable Energy, Elsevier, vol. 80(C), pages 370-379.
    12. Carol Alexander & Emese Lazar & Silvia Stanescu, 2011. "Analytic Approximations to GARCH Aggregated Returns Distributions with Applications to VaR and ETL," ICMA Centre Discussion Papers in Finance icma-dp2011-08, Henley Business School, Reading University.
    13. Lee, Yun Shin & Scholtes, Stefan, 2014. "Empirical prediction intervals revisited," International Journal of Forecasting, Elsevier, vol. 30(2), pages 217-234.
    14. Derek Bunn, Arne Andresen, Dipeng Chen, Sjur Westgaard, 2016. "Analysis and Forecasting of Electricty Price Risks with Quantile Factor Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    15. James W. Taylor, 2004. "Smooth transition exponential smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 385-404.
    16. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:45:y:1999:i:2:p:225-237. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.