IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v43y2022i4p587-609.html
   My bibliography  Save this article

Long‐term prediction intervals with many covariates

Author

Listed:
  • Sayar Karmakar
  • Marek Chudý
  • Wei Biao Wu

Abstract

Accurate forecasting is one of the fundamental focuses in the literature of econometric time‐series. Often practitioners and policymakers want to predict outcomes of an entire time horizon in the future instead of just a single k‐step ahead prediction. These series, apart from their own possible nonlinear dependence, are often also influenced by many external predictors. In this article, we construct prediction intervals of time‐aggregated forecasts in a high‐dimensional regression setting. Our approach is based on quantiles of residuals obtained by the popular LASSO routine. We allow for general heavy‐tailed, long‐memory, and nonlinear stationary error processes and stochastic predictors. Through a series of systematically arranged consistency results, we provide theoretical guarantees of our proposed quantile‐based method in all of these scenarios. After validating our approach using simulations, we also propose a novel bootstrap‐based method that can boost the coverage of the theoretical intervals. Finally analyzing the EPEX Spot data, we construct prediction intervals for hourly electricity prices over horizons spanning 17 weeks and contrast them to selected Bayesian and bootstrap interval forecasts.

Suggested Citation

  • Sayar Karmakar & Marek Chudý & Wei Biao Wu, 2022. "Long‐term prediction intervals with many covariates," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 587-609, July.
  • Handle: RePEc:bla:jtsera:v:43:y:2022:i:4:p:587-609
    DOI: 10.1111/jtsa.12629
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12629
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Raviv, Eran & Bouwman, Kees E. & van Dijk, Dick, 2015. "Forecasting day-ahead electricity prices: Utilizing hourly prices," Energy Economics, Elsevier, vol. 50(C), pages 227-239.
    2. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    3. Kitsul, Yuriy & Wright, Jonathan H., 2013. "The economics of options-implied inflation probability density functions," Journal of Financial Economics, Elsevier, vol. 110(3), pages 696-711.
    4. Bansal, Ravi & Kiku, Dana & Yaron, Amir, 2016. "Risks for the long run: Estimation with time aggregation," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 52-69.
    5. Alvaro Cartea & Marcelo Figueroa, 2005. "Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 313-335.
    6. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    7. Taylor, James W., 2010. "Reply to the discussion of: Exponentially weighted methods for forecasting intraday time series with multiple seasonal cycles," International Journal of Forecasting, Elsevier, vol. 26(4), pages 658-660, October.
    8. Dehling, Herold & Fried, Roland & Sharipov, Olimjon Sh. & Vogel, Daniel & Wornowizki, Max, 2013. "Estimation of the variance of partial sums of dependent processes," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 141-147.
    9. Bierbrauer, Michael & Menn, Christian & Rachev, Svetlozar T. & Truck, Stefan, 2007. "Spot and derivative pricing in the EEX power market," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3462-3485, November.
    10. Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 744-763.
    11. Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
    12. Ross Askanazi & Francis X. Diebold & Frank Schorfheide & Minchul Shin, 2018. "On the Comparison of Interval Forecasts," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 953-965, November.
    13. Chatfield, Chris, 1993. "Calculating Interval Forecasts: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 143-144, April.
    14. Chatfield, Chris, 1993. "Calculating Interval Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 121-135, April.
    15. Taylor, James W., 2010. "Exponentially weighted methods for forecasting intraday time series with multiple seasonal cycles," International Journal of Forecasting, Elsevier, vol. 26(4), pages 627-646, October.
    16. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    17. Huurman, Christian & Ravazzolo, Francesco & Zhou, Chen, 2012. "The power of weather," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3793-3807.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kejin Wu & Sayar Karmakar & Rangan Gupta, 2023. "GARCHX-NoVaS: A Model-free Approach to Incorporate Exogenous Variables," Papers 2308.13346, arXiv.org, revised Sep 2024.
    2. Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.
    3. Paul Ghelasi & Florian Ziel, 2024. "From day-ahead to mid and long-term horizons with econometric electricity price forecasting models," Papers 2406.00326, arXiv.org, revised Aug 2024.
    4. Kejin Wu & Sayar Karmakar & Rangan Gupta & Christian Pierdzioch, 2023. "Climate Risks and Stock Market Volatility Over a Century in an Emerging Market Economy: The Case of South Africa," Working Papers 202326, University of Pretoria, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sayar Karmakar & Marek Chudy & Wei Biao Wu, 2020. "Long-term prediction intervals with many covariates," Papers 2012.08223, arXiv.org, revised Sep 2021.
    2. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    3. G P Girish & Aviral Kumar Tiwari, 2016. "A comparison of different univariate forecasting models forSpot Electricity Price in India," Economics Bulletin, AccessEcon, vol. 36(2), pages 1039-1057.
    4. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    5. Ergemen, Yunus Emre & Haldrup, Niels & Rodríguez-Caballero, Carlos Vladimir, 2016. "Common long-range dependence in a panel of hourly Nord Pool electricity prices and loads," Energy Economics, Elsevier, vol. 60(C), pages 79-96.
    6. Foroni, Claudia & Ravazzolo, Francesco & Rossini, Luca, 2019. "Forecasting daily electricity prices with monthly macroeconomic variables," Working Paper Series 2250, European Central Bank.
    7. M. Chudý & S. Karmakar & W. B. Wu, 2020. "Long-term prediction intervals of economic time series," Empirical Economics, Springer, vol. 58(1), pages 191-222, January.
    8. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    9. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    10. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    11. Raviv, Eran & Bouwman, Kees E. & van Dijk, Dick, 2015. "Forecasting day-ahead electricity prices: Utilizing hourly prices," Energy Economics, Elsevier, vol. 50(C), pages 227-239.
    12. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    13. Alexandre Lucas & Konstantinos Pegios & Evangelos Kotsakis & Dan Clarke, 2020. "Price Forecasting for the Balancing Energy Market Using Machine-Learning Regression," Energies, MDPI, vol. 13(20), pages 1-16, October.
    14. Auer, Benjamin R., 2016. "How does Germany's green energy policy affect electricity market volatility? An application of conditional autoregressive range models," Energy Policy, Elsevier, vol. 98(C), pages 621-628.
    15. Jakub Nowotarski & Rafał Weron, 2015. "Computing electricity spot price prediction intervals using quantile regression and forecast averaging," Computational Statistics, Springer, vol. 30(3), pages 791-803, September.
    16. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Technology.
    17. Foroni, Claudia & Ravazzolo, Francesco & Rossini, Luca, 2023. "Are low frequency macroeconomic variables important for high frequency electricity prices?," Economic Modelling, Elsevier, vol. 120(C).
    18. Segnon Mawuli & Lau Chi Keung & Wilfling Bernd & Gupta Rangan, 2022. "Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(1), pages 73-98, February.
    19. Mauro Bernardi & Francesco Lisi, 2020. "Point and Interval Forecasting of Zonal Electricity Prices and Demand Using Heteroscedastic Models: The IPEX Case," Energies, MDPI, vol. 13(23), pages 1-34, November.
    20. Michail I. Seitaridis & Nikolaos S. Thomaidis & Pandelis N. Biskas, 2021. "Fundamental Responsiveness in European Electricity Prices," Energies, MDPI, vol. 14(22), pages 1-14, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:43:y:2022:i:4:p:587-609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.