IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "Microstructure noise in the continuous case: the pre-averaging approach"

by Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Wang, Chengyang & Nishiyama, Yoshihiko, 2015. "Volatility forecast of stock indices by model averaging using high-frequency data," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 324-337.
  2. Zhang, Lan & Mykland, Per A. & Aït-Sahalia, Yacine, 2011. "Edgeworth expansions for realized volatility and related estimators," Journal of Econometrics, Elsevier, vol. 160(1), pages 190-203, January.
  3. repec:hal:journl:peer-00815564 is not listed on IDEAS
  4. Kim Christensen & Roel Oomen & Mark Podolskij, 2011. "Fact or friction: Jumps at ultra high frequency," CREATES Research Papers 2011-19, Department of Economics and Business Economics, Aarhus University.
  5. Nikolaus Hautsch & Mark Podolskij, 2010. "Pre-Averaging Based Estimation of Quadratic Variation in the Presence of Noise and Jumps: Theory, Implementation, and Empirical Evidence," SFB 649 Discussion Papers SFB649DP2010-038, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  6. Harry Vander Elst, 2015. "FloGARCH : Realizing long memory and asymmetries in returns volatility," Working Paper Research 280, National Bank of Belgium.
  7. Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Papers 2009-W03, Economics Group, Nuffield College, University of Oxford.
  8. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
  9. Neil Shephard & Dacheng Xiu, 2012. "Econometric analysis of multivariate realised QML: efficient positive semi-definite estimators of the covariation of equity prices," Economics Series Working Papers 604, University of Oxford, Department of Economics.
  10. Yin Liao & Heather M. Anderson, 2011. "Testing for co-jumps in high-frequency financial data: an approach based on first-high-low-last prices," Monash Econometrics and Business Statistics Working Papers 9/11, Monash University, Department of Econometrics and Business Statistics.
  11. Liu, Cheng & Tang, Cheng Yong, 2014. "A quasi-maximum likelihood approach for integrated covariance matrix estimation with high frequency data," Journal of Econometrics, Elsevier, vol. 180(2), pages 217-232.
  12. Podolskij, Mark & Vetter, Mathias, 2008. "Bipower-type estimation in a noisy diffusion setting," Technical Reports 2008,24, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  13. Xiu, Dacheng, 2010. "Quasi-maximum likelihood estimation of volatility with high frequency data," Journal of Econometrics, Elsevier, vol. 159(1), pages 235-250, November.
  14. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
  15. Benjamin Favetto, 2016. "Estimating functions for noisy observations of ergodic diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 19(1), pages 1-28, April.
  16. Mark Podolskij & Bezirgen Veliyev & Nakahiro Yoshida, 2015. "Edgeworth expansion for the pre-averaging estimator," CREATES Research Papers 2015-60, Department of Economics and Business Economics, Aarhus University.
  17. Vander Elst, Harry & Veredas, David, 2014. "Disentangled jump-robust realized covariances and correlations with non-synchronous prices," DES - Working Papers. Statistics and Econometrics. WS ws142416, Universidad Carlos III de Madrid. Departamento de Estadística.
  18. Aït-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2011. "Ultra high frequency volatility estimation with dependent microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 160-175, January.
  19. Fulvio Corsi & Davide Pirino & Roberto Renò, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Post-Print hal-00741630, HAL.
  20. repec:hal:journl:peer-00732538 is not listed on IDEAS
  21. Aït-Sahalia, Yacine & Fan, Jianqing & Li, Yingying, 2013. "The leverage effect puzzle: Disentangling sources of bias at high frequency," Journal of Financial Economics, Elsevier, vol. 109(1), pages 224-249.
  22. Minjing Tao & Yahzen Wang & Qiwei Yao & Jian Zou, 2011. "Large volatility matrix inference via combining low-frequency and high-frequency approaches," LSE Research Online Documents on Economics 39321, London School of Economics and Political Science, LSE Library.
  23. Alain P. Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Mico Loretan, 2007. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," International Finance Discussion Papers 905, Board of Governors of the Federal Reserve System (U.S.).
  24. Torben G. Andersen & Oleg Bondarenko & Viktor Todorov & George Tauchen, 2013. "The Fine Structure of Equity-Index Option Dynamics," CREATES Research Papers 2013-52, Department of Economics and Business Economics, Aarhus University.
  25. Ole E. Barndorff-Nielsen & Silja Kinnebrock & Neil Shephard, 2008. "Measuring downside risk — realised semivariance," CREATES Research Papers 2008-42, Department of Economics and Business Economics, Aarhus University.
  26. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," OFRC Working Papers Series 2008fe29, Oxford Financial Research Centre.
  27. Reiß, Markus & Todorov, Viktor & Tauchen, George, 2015. "Nonparametric test for a constant beta between Itô semi-martingales based on high-frequency data," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 2955-2988.
  28. Ubukata, Masato & Watanabe, Toshiaki, 2015. "Evaluating the performance of futures hedging using multivariate realized volatility," Journal of the Japanese and International Economies, Elsevier, vol. 38(C), pages 148-171.
  29. Wang, Xunxiao & Wu, Chongfeng & Xu, Weidong, 2015. "Volatility forecasting: The role of lunch-break returns, overnight returns, trading volume and leverage effects," International Journal of Forecasting, Elsevier, vol. 31(3), pages 609-619.
  30. Li, Yingying & Xie, Shangyu & Zheng, Xinghua, 2016. "Efficient estimation of integrated volatility incorporating trading information," Journal of Econometrics, Elsevier, vol. 195(1), pages 33-50.
  31. Park, Sujin & Hong, Seok Young & Linton, Oliver, 2016. "Estimating the quadratic covariation matrix for asynchronously observed high frequency stock returns corrupted by additive measurement error," Journal of Econometrics, Elsevier, vol. 191(2), pages 325-347.
  32. Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.
  33. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
  34. Valeri Voev, 2009. "On the Economic Evaluation of Volatility Forecasts," CREATES Research Papers 2009-56, Department of Economics and Business Economics, Aarhus University.
  35. Kim, Donggyu & Wang, Yazhen, 2016. "Unified discrete-time and continuous-time models and statistical inferences for merged low-frequency and high-frequency financial data," Journal of Econometrics, Elsevier, vol. 194(2), pages 220-230.
  36. Kalnina, Ilze, 2011. "Subsampling high frequency data," Journal of Econometrics, Elsevier, vol. 161(2), pages 262-283, April.
  37. Wang, Kent & Liu, Junwei & Liu, Zhi, 2013. "Disentangling the effect of jumps on systematic risk using a new estimator of integrated co-volatility," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1777-1786.
  38. Xin-Bing Kong, 2013. "A direct approach to risk approximation for vast portfolios under gross-exposure constraint using high-frequency data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(4), pages 647-669, November.
  39. Altmeyer, Randolf & Bibinger, Markus, 2015. "Functional stable limit theorems for quasi-efficient spectral covolatility estimators," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4556-4600.
  40. Christensen, Kim & Podolskij, Mark & Vetter, Mathias, 2013. "On covariation estimation for multivariate continuous Itô semimartingales with noise in non-synchronous observation schemes," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 59-84.
  41. Zhang, Lan, 2011. "Estimating covariation: Epps effect, microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 33-47, January.
  42. Lee, Suzanne S. & Mykland, Per A., 2012. "Jumps in equilibrium prices and market microstructure noise," Journal of Econometrics, Elsevier, vol. 168(2), pages 396-406.
  43. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
  44. Maria Elvira Mancino & Simona Sanfelici, 2012. "Estimation of quarticity with high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 607-622, December.
  45. Kim, Donggyu & Wang, Yazhen, 2016. "Sparse PCA-based on high-dimensional Itô processes with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 172-189.
  46. Griffin, Jim E. & Oomen, Roel C.A., 2011. "Covariance measurement in the presence of non-synchronous trading and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 58-68, January.
  47. Bibinger, Markus & Winkelmann, Lars, 2015. "Econometrics of co-jumps in high-frequency data with noise," Journal of Econometrics, Elsevier, vol. 184(2), pages 361-378.
  48. Kim Christensen & Roel Oomen & Mark Podolskij, 2010. "Realised quantile-based estimation of the integrated variance," Post-Print hal-00732538, HAL.
  49. Linton, Oliver & Whang, Yoon-Jae & Yen, Yu-Min, 2016. "A nonparametric test of a strong leverage hypothesis," Journal of Econometrics, Elsevier, vol. 194(1), pages 153-186.
  50. Rosenbaum, Mathieu & Tankov, Peter, 2011. "Asymptotic results for time-changed Lévy processes sampled at hitting times," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1607-1632, July.
  51. Cecilia Mancini & Vanessa Mattiussi & Roberto Renò, 2015. "Spot volatility estimation using delta sequences," Finance and Stochastics, Springer, vol. 19(2), pages 261-293, April.
  52. Kim, Donggyu & Wang, Yazhen & Zou, Jian, 2016. "Asymptotic theory for large volatility matrix estimation based on high-frequency financial data," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3527-3577.
  53. Aït-Sahalia, Yacine & Jacod, Jean & Li, Jia, 2012. "Testing for jumps in noisy high frequency data," Journal of Econometrics, Elsevier, vol. 168(2), pages 207-222.
  54. Silja Kinnebrock & Mark Podolskij, 2008. "An Econometric Analysis of Modulated Realised Covariance, Regression and Correlation in Noisy Diffusion Models," OFRC Working Papers Series 2008fe25, Oxford Financial Research Centre.
  55. Todorov, Viktor, 2009. "Estimation of continuous-time stochastic volatility models with jumps using high-frequency data," Journal of Econometrics, Elsevier, vol. 148(2), pages 131-148, February.
  56. Kim, Seonjin & Zhao, Zhibiao, 2014. "Specification test for Markov models with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 118-133.
  57. Li, Yingying & Zhang, Zhiyuan & Zheng, Xinghua, 2013. "Volatility inference in the presence of both endogenous time and microstructure noise," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2696-2727.
  58. Schmisser Emeline, 2011. "Non-parametric drift estimation for diffusions from noisy data," Statistics & Risk Modeling, De Gruyter, vol. 28(2), pages 119-150, May.
  59. Flavia Barsotti & Simona Sanfelici, 2016. "Market Microstructure Effects on Firm Default Risk Evaluation," Econometrics, MDPI, Open Access Journal, vol. 4(3), pages 31-31, July.
  60. Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
  61. Clément, Emmanuelle & Gloter, Arnaud, 2011. "Limit theorems in the Fourier transform method for the estimation of multivariate volatility," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1097-1124, May.
  62. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
  63. Torben B. Rasmussen, 2009. "Jump Testing and the Speed of Market Adjustment," CREATES Research Papers 2009-08, Department of Economics and Business Economics, Aarhus University.
  64. Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Series Working Papers 593, University of Oxford, Department of Economics.
  65. Vetter, Mathias, 2014. "Inference on the Lévy measure in case of noisy observations," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 125-133.
  66. M. Podolskij & D. Ziggel, 2010. "New tests for jumps in semimartingale models," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 15-41, April.
  67. repec:oxf:wpaper:382 is not listed on IDEAS
  68. Jean Jacod & Mark Podolskij & Mathias Vetter, 2008. "Intertemporal Asset Allocation with Habit Formation in Preferences: An Approximate Analytical Solution," CREATES Research Papers 2008-61, Department of Economics and Business Economics, Aarhus University.
  69. Figueroa-López, José E. & Nisen, Jeffrey, 2013. "Optimally thresholded realized power variations for Lévy jump diffusion models," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2648-2677.
  70. Bandi, F.M. & Renò, R., 2016. "Price and volatility co-jumps," Journal of Financial Economics, Elsevier, vol. 119(1), pages 107-146.
  71. Adam D. Bull, 2015. "Semimartingale detection and goodness-of-fit tests," Papers 1506.00088, arXiv.org, revised Jun 2016.
  72. Koike, Yuta, 2014. "Limit theorems for the pre-averaged Hayashi–Yoshida estimator with random sampling," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2699-2753.
  73. Novotný, Jan & Petrov, Dmitri & Urga, Giovanni, 2015. "Trading price jump clusters in foreign exchange markets," Journal of Financial Markets, Elsevier, vol. 24(C), pages 66-92.
  74. Ikeda, Shin S., 2016. "A bias-corrected estimator of the covariation matrix of multiple security prices when both microstructure effects and sampling durations are persistent and endogenous," Journal of Econometrics, Elsevier, vol. 193(1), pages 203-214.
  75. Vitali Alexeev & Mardi Dungey & Wenying Yao, 2016. "Continuous and Jump Betas: Implications for Portfolio Diversification," Econometrics, MDPI, Open Access Journal, vol. 4(2), pages 27-27, June.
  76. Aït-Sahalia, Yacine & Xiu, Dacheng, 2016. "Increased correlation among asset classes: Are volatility or jumps to blame, or both?," Journal of Econometrics, Elsevier, vol. 194(2), pages 205-219.
  77. repec:cte:wsrepe:es142416 is not listed on IDEAS
  78. Bibinger, Markus, 2012. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2411-2453.
  79. Jacod, Jean & Mykland, Per A., 2015. "Microstructure noise in the continuous case: Approximate efficiency of the adaptive pre-averaging method," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 2910-2936.
  80. Mancini, Cecilia, 2013. "Measuring the relevance of the microstructure noise in financial data," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2728-2751.
  81. Rasmus Tangsgaard Varneskov & Valeri Voev, 2010. "The Role of Realized Ex-post Covariance Measures and Dynamic Model Choice on the Quality of Covariance Forecasts," CREATES Research Papers 2010-45, Department of Economics and Business Economics, Aarhus University.
  82. Zu, Yang & Peter Boswijk, H., 2014. "Estimating spot volatility with high-frequency financial data," Journal of Econometrics, Elsevier, vol. 181(2), pages 117-135.
  83. Markus Rei\ss, 2010. "Asymptotic equivalence and sufficiency for volatility estimation under microstructure noise," Papers 1001.3006, arXiv.org.
  84. Zhi Liu, 2016. "Estimating integrated co-volatility with partially miss-ordered high frequency data," Statistical Inference for Stochastic Processes, Springer, vol. 19(2), pages 175-197, July.
  85. Anne Brix & Asger Lunde, 2015. "Prediction-based estimating functions for stochastic volatility models with noisy data: comparison with a GMM alternative," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(4), pages 433-465, October.
  86. repec:hal:journl:peer-00741630 is not listed on IDEAS
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.