IDEAS home Printed from https://ideas.repec.org/p/aah/create/2018-18.html
   My bibliography  Save this paper

Cross-sectional noise reduction and more efficient estimation of Integrated Variance

Author

Listed:
  • Giorgio Mirone

    (Aarhus University and CREATES)

Abstract

In this paper we propose a straightforward approach to obtain a more efficient estimate of the integrated variance of an asset through a cross-sectional combination with a futures contract written on it. Our method constructs a variance-preserving series with reduced noise size as a linear combination of the underlying asset and the futures and base measurement of the integrated variance on this new series. We first illustrate how a theoretically but infeasible optimal series can be obtained and then suggest a feasible procedure to attain noise reduction. In a simulation study we verify how prevalent estimators of integrated variance applied to such noise-reduced series outperform estimators applied directly to the asset price. Finally, we apply the method to an empirical data set and, through the stabilized signature plot, we show how the noise reduced series provides consistent integrated variance estimates using naive realized measures at very high frequencies.

Suggested Citation

  • Giorgio Mirone, 2018. "Cross-sectional noise reduction and more efficient estimation of Integrated Variance," CREATES Research Papers 2018-18, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2018-18
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/18/rp18_18.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:hal:journl:peer-00815564 is not listed on IDEAS
    2. Giorgio Mirone, 2017. "Inference from the futures: ranking the noise cancelling accuracy of realized measures," CREATES Research Papers 2017-24, Department of Economics and Business Economics, Aarhus University.
    3. Yacine Ait-Sahalia & Jialin Yu, 2008. "High Frequency Market Microstructure Noise Estimates and Liquidity Measures," NBER Working Papers 13825, National Bureau of Economic Research, Inc.
    4. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
    5. Zhang, Lan, 2011. "Estimating covariation: Epps effect, microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 33-47, January.
    6. F. M. Bandi & J. R. Russell, 2008. "Microstructure Noise, Realized Variance, and Optimal Sampling," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(2), pages 339-369.
    7. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2009. "Microstructure noise in the continuous case: The pre-averaging approach," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2249-2276, July.
    8. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    9. Munk, Claus, 2015. "Fixed Income Modelling," OUP Catalogue, Oxford University Press, number 9780198716440.
    10. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    11. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    12. Brownlees, C.T. & Gallo, G.M., 2006. "Financial econometric analysis at ultra-high frequency: Data handling concerns," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2232-2245, December.
    13. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    14. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    15. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    16. Ramaswamy, Krishna & Sundaresan, Suresh M, 1985. "The Valuation of Options on Futures Contracts," Journal of Finance, American Finance Association, vol. 40(5), pages 1319-1340, December.
    17. Roberto Renò, 2003. "A Closer Look At The Epps Effect," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 87-102.
    18. Eduardo Rossi & Paolo Santucci de Magistris, 2013. "A No‐Arbitrage Fractional Cointegration Model for Futures and Spot Daily Ranges," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(1), pages 77-102, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgio Mirone, 2017. "Inference from the futures: ranking the noise cancelling accuracy of realized measures," CREATES Research Papers 2017-24, Department of Economics and Business Economics, Aarhus University.
    2. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    3. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    4. Ilze Kalnina, 2023. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 538-549, April.
    5. Vladimír Holý & Petra Tomanová, 2023. "Streaming Approach to Quadratic Covariation Estimation Using Financial Ultra-High-Frequency Data," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 463-485, June.
    6. Liu, Zhi & Kong, Xin-Bing & Jing, Bing-Yi, 2018. "Estimating the integrated volatility using high-frequency data with zero durations," Journal of Econometrics, Elsevier, vol. 204(1), pages 18-32.
    7. Shen, Keren & Yao, Jianfeng & Li, Wai Keung, 2019. "On a spiked model for large volatility matrix estimation from noisy high-frequency data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 207-221.
    8. Neil Shephard & Dacheng Xiu, 2012. "Econometric analysis of multivariate realised QML: efficient positive semi-definite estimators of the covariation of equity prices," Economics Series Working Papers 604, University of Oxford, Department of Economics.
    9. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
    10. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    11. Zhao, X. & Hong, S. Y. & Linton, O. B., 2024. "Jumps Versus Bursts: Dissection and Origins via a New Endogenous Thresholding Approach," Cambridge Working Papers in Economics 2449, Faculty of Economics, University of Cambridge.
    12. Shephard, Neil & Xiu, Dacheng, 2017. "Econometric analysis of multivariate realised QML: Estimation of the covariation of equity prices under asynchronous trading," Journal of Econometrics, Elsevier, vol. 201(1), pages 19-42.
    13. Christensen, K. & Podolskij, M. & Thamrongrat, N. & Veliyev, B., 2017. "Inference from high-frequency data: A subsampling approach," Journal of Econometrics, Elsevier, vol. 197(2), pages 245-272.
    14. Chang, Jinyuan & Hu, Qiao & Liu, Cheng & Tang, Cheng Yong, 2024. "Optimal covariance matrix estimation for high-dimensional noise in high-frequency data," Journal of Econometrics, Elsevier, vol. 239(2).
    15. Pelger, Markus, 2019. "Large-dimensional factor modeling based on high-frequency observations," Journal of Econometrics, Elsevier, vol. 208(1), pages 23-42.
    16. Varneskov, Rasmus & Voev, Valeri, 2013. "The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts," Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
    17. Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2014. "Bootstrap Inference for Pre-averaged Realized Volatility based on Nonoverlapping Returns," Journal of Financial Econometrics, Oxford University Press, vol. 12(4), pages 679-707.
    18. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2016. "Testing for heteroscedasticity in jumpy and noisy high-frequency data: A resampling approach," CREATES Research Papers 2016-27, Department of Economics and Business Economics, Aarhus University.
    19. Zhang, Chuanhai & Liu, Zhi & Liu, Qiang, 2021. "Jumps at ultra-high frequency: Evidence from the Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    20. Vladim'ir Hol'y & Petra Tomanov'a, 2020. "Streaming Approach to Quadratic Covariation Estimation Using Financial Ultra-High-Frequency Data," Papers 2003.13062, arXiv.org, revised Dec 2021.

    More about this item

    Keywords

    Realized Covariance; High-frequency data; Volatility Estimation; Market Microstructure Noise; Noise reduction; Volatility Signature Plot; Realized Variance;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2018-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.