IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v71y2019i4d10.1007_s10463-018-0659-8.html
   My bibliography  Save this article

Asymptotic properties of the realized skewness and related statistics

Author

Listed:
  • Yuta Koike

    (University of Tokyo
    Tokyo Metropolitan University
    The Institute of Statistical Mathematics
    CREST, Japan Science and Technology Agency)

  • Zhi Liu

    (University of Macau)

Abstract

The recent empirical works have pointed out that the realized skewness, which is the sample skewness of intraday high-frequency returns of a financial asset, serves as forecasting future returns in the cross section. Theoretically, the realized skewness is interpreted as the sample skewness of returns of a discretely observed semimartingale in a fixed interval. The aim of this paper is to investigate the asymptotic property of the realized skewness in such a framework. We also develop an estimation theory for the limiting characteristic of the realized skewness in a situation where measurement errors are present and sampling times are stochastic.

Suggested Citation

  • Yuta Koike & Zhi Liu, 2019. "Asymptotic properties of the realized skewness and related statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 703-741, August.
  • Handle: RePEc:spr:aistmt:v:71:y:2019:i:4:d:10.1007_s10463-018-0659-8
    DOI: 10.1007/s10463-018-0659-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-018-0659-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-018-0659-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2005. "Correcting the Errors: Volatility Forecast Evaluation Using High-Frequency Data and Realized Volatilities," Econometrica, Econometric Society, vol. 73(1), pages 279-296, January.
    2. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2009. "Microstructure noise in the continuous case: The pre-averaging approach," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2249-2276, July.
    3. Amaya, Diego & Christoffersen, Peter & Jacobs, Kris & Vasquez, Aurelio, 2015. "Does realized skewness predict the cross-section of equity returns?," Journal of Financial Economics, Elsevier, vol. 118(1), pages 135-167.
    4. Fukasawa, Masaaki, 2010. "Realized volatility with stochastic sampling," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 829-852, June.
    5. Mark Podolskij & Mathias Vetter, 2010. "Understanding limit theorems for semimartingales: a short survey," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(3), pages 329-351, August.
    6. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(4), pages 465-487, December.
    7. Mark Podolskij & Mathias Vetter, 2010. "Understanding limit theorems for semimartingales: a short survey," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(s1), pages 329-351.
    8. Li, Yingying & Mykland, Per A. & Renault, Eric & Zhang, Lan & Zheng, Xinghua, 2014. "Realized Volatility When Sampling Times Are Possibly Endogenous," Econometric Theory, Cambridge University Press, vol. 30(3), pages 580-605, June.
    9. Kinnebrock, Silja & Podolskij, Mark, 2008. "A note on the central limit theorem for bipower variation of general functions," Stochastic Processes and their Applications, Elsevier, vol. 118(6), pages 1056-1070, June.
    10. Roman Kozhan & Anthony Neuberger & Paul Schneider, 2013. "The Skew Risk Premium in the Equity Index Market," The Review of Financial Studies, Society for Financial Studies, vol. 26(9), pages 2174-2203.
    11. Yacine Aït-Sahalia & Jean Jacod, 2014. "High-Frequency Financial Econometrics," Economics Books, Princeton University Press, edition 1, number 10261.
    12. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
    13. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
    14. Yuta Koike, 2017. "Time endogeneity and an optimal weight function in pre-averaging covariance estimation," Statistical Inference for Stochastic Processes, Springer, vol. 20(1), pages 15-56, April.
    15. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
    16. Markus Bibinger & Mathias Vetter, 2015. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 707-743, August.
    17. Todd Mitton & Keith Vorkink, 2007. "Equilibrium Underdiversification and the Preference for Skewness," The Review of Financial Studies, Society for Financial Studies, vol. 20(4), pages 1255-1288.
    18. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    19. Friend, Irwin & Westerfield, Randolph, 1980. "Co-Skewness and Capital Asset Pricing," Journal of Finance, American Finance Association, vol. 35(4), pages 897-913, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ole Martin & Mathias Vetter, 2019. "Laws of large numbers for Hayashi–Yoshida-type functionals," Finance and Stochastics, Springer, vol. 23(3), pages 451-500, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Schneider & Christian Wagner & Josef Zechner, 2020. "Low‐Risk Anomalies?," Journal of Finance, American Finance Association, vol. 75(5), pages 2673-2718, October.
    2. Altmeyer, Randolf & Bibinger, Markus, 2015. "Functional stable limit theorems for quasi-efficient spectral covolatility estimators," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4556-4600.
    3. Aleksey Kolokolov & Giulia Livieri & Davide Pirino, 2022. "Testing for Endogeneity of Irregular Sampling Schemes," CEIS Research Paper 547, Tor Vergata University, CEIS, revised 19 Dec 2022.
    4. Dai, Yiming & Jiang, Yuexiang & Long, Huaigang & Wang, Hui & Zaremba, Adam, 2023. "Does realized skewness predict the cross-section of Chinese stock returns?," Finance Research Letters, Elsevier, vol. 58(PB).
    5. Sévi, Benoît, 2013. "An empirical analysis of the downside risk-return trade-off at daily frequency," Economic Modelling, Elsevier, vol. 31(C), pages 189-197.
    6. Lin, Yuehao & Lehnert, Thorsten & Wolff, Christian, 2019. "Skewness risk premium: Theory and empirical evidence," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 174-185.
    7. Ho, Tuan & Kim, Kirak & Li, Yang & Xu, Fangming, 2023. "Can Real Options Explain the Skewness of Stock Returns?," Journal of Banking & Finance, Elsevier, vol. 148(C).
    8. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
    9. Chen, Steven Shu-Hsiu, 2024. "International crash risk premium," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 94(C).
    10. Kolokolov, Aleksey & Livieri, Giulia & Pirino, Davide, 2020. "Statistical inferences for price staleness," Journal of Econometrics, Elsevier, vol. 218(1), pages 32-81.
    11. Ulrich Hounyo, 2014. "Bootstrapping integrated covariance matrix estimators in noisy jump-diffusion models with non-synchronous trading," CREATES Research Papers 2014-35, Department of Economics and Business Economics, Aarhus University.
    12. Aretz, Kevin & Eser Arisoy, Y., 2023. "The Pricing of Skewness Over Different Return Horizons," Journal of Banking & Finance, Elsevier, vol. 148(C).
    13. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    14. Langlois, Hugues, 2020. "Measuring skewness premia," Journal of Financial Economics, Elsevier, vol. 135(2), pages 399-424.
    15. Chang, Bo Young & Christoffersen, Peter & Jacobs, Kris, 2013. "Market skewness risk and the cross section of stock returns," Journal of Financial Economics, Elsevier, vol. 107(1), pages 46-68.
    16. Jondeau, Eric & Zhang, Qunzi & Zhu, Xiaoneng, 2019. "Average skewness matters," Journal of Financial Economics, Elsevier, vol. 134(1), pages 29-47.
    17. Maheu, John M. & McCurdy, Thomas H. & Zhao, Xiaofei, 2013. "Do jumps contribute to the dynamics of the equity premium?," Journal of Financial Economics, Elsevier, vol. 110(2), pages 457-477.
    18. Ayadi, Mohamed A. & Cao, Xu & Lazrak, Skander & Wang, Yan, 2019. "Do idiosyncratic skewness and kurtosis really matter?," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    19. Ilze Kalnina, 2023. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 538-549, April.
    20. Eric Jondeau & Xuewu Wang & Zhipeng Yan & Qunzi Zhang, 2020. "Skewness and index futures return," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(11), pages 1648-1664, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:71:y:2019:i:4:d:10.1007_s10463-018-0659-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.