IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Understanding limit theorems for semimartingales: a short survey

  • Mark Podolskij
  • Mathias Vetter

This paper presents a short survey on limit theorems for certain functionals of semimartingales, which are observed at high frequency. Our aim is to explain the main ideas of the theory to a broader audience. We introduce the concept of stable convergence, which is crucial for our purpose. We show some laws of large numbers (for the continuous and the discontinuous case) that are the most interesting from a practical point of view, and demonstrate the associated stable central limit theorems. Moreover, we state a simple sketch of the proofs and give some examples.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9574.2010.00460.x
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Netherlands Society for Statistics and Operations Research in its journal Statistica Neerlandica.

Volume (Year): 64 (2010)
Issue (Month): s1 ()
Pages: 329-351

as
in new window

Handle: RePEc:bla:stanee:v:64:y:2010:i:s1:p:329-351
Contact details of provider: Web page: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402

Order Information: Web: http://www.blackwellpublishing.com/subs.asp?ref=0039-0402

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Ole Barndorff-Nielsen & Svend Erik Graversen & Jean Jacod & Mark Podolskij & Neil Shephard, 2004. "A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales," Economics Papers 2004-W29, Economics Group, Nuffield College, University of Oxford.
  2. Kinnebrock, Silja & Podolskij, Mark, 2008. "A note on the central limit theorem for bipower variation of general functions," Stochastic Processes and their Applications, Elsevier, vol. 118(6), pages 1056-1070, June.
  3. Ole E. Barndorff-Nielsen & Neil Shephard & Matthias Winkel, 2005. "Limit theorems for multipower variation in the presence of jumps," OFRC Working Papers Series 2005fe06, Oxford Financial Research Centre.
  4. Holger Dette & Mark Podolskij & Mathias Vetter, 2006. "Estimation of Integrated Volatility in Continuous-Time Financial Models with Applications to Goodness-of-Fit Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 259-278.
  5. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Econometrics of testing for jumps in financial economics using bipower variation," Economics Papers 2003-W21, Economics Group, Nuffield College, University of Oxford.
  6. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:64:y:2010:i:s1:p:329-351. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.