IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i14p2511-d866277.html
   My bibliography  Save this article

Testing for the Presence of the Leverage Effect without Estimation

Author

Listed:
  • Zhi Liu

    (Department of Mathematics, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
    Zhuhai-UM Science and Technology Research Institute, Zhuhai 519072, China)

Abstract

Problem : The leverage effect plays an important role in finance. However, the statistical test for the presence of the leverage effect is still lacking study. Approach: In this paper, by using high frequency data, we propose a novel procedure to test if the driving Brownian motion of an It o ^ semi-martingale is correlated to its volatility (referred to as the leverage effect in financial econometrics) over a long time period. The asymptotic setting is based on observations within a long time interval with the mesh of the observation grid shrinking to zero. We construct a test statistic via forming a sequence of Studentized statistics whose distributions are asymptotically normal over blocks of a fixed time span, and then collect the sequence based on the whole data set of a long time span. Result: The asymptotic behaviour of the Studentized statistics was obtained from the cubic variation of the underlying semi-martingale and the asymptotic distribution of the proposed test statistic under the null hypothesis that the leverage effect is absent was established, and we also show that the test has an asymptotic power of one against the alternative hypothesis that the leverage effect is present. Implications: We conducted extensive simulation studies to assess the finite sample performance of the test statistics, and the results show a satisfactory performance for the test. Finally, we implemented the proposed test procedure to a dataset of the SP500 index. We see that the null hypothesis of the absence of the leverage effect is rejected for most of the time period. Therefore, this provides a strong evidence that the leverage effect is a necessary ingredient in modelling high-frequency data.

Suggested Citation

  • Zhi Liu, 2022. "Testing for the Presence of the Leverage Effect without Estimation," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2511-:d:866277
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/14/2511/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/14/2511/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aït-Sahalia, Yacine & Fan, Jianqing & Li, Yingying, 2013. "The leverage effect puzzle: Disentangling sources of bias at high frequency," Journal of Financial Economics, Elsevier, vol. 109(1), pages 224-249.
    2. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2009. "Microstructure noise in the continuous case: The pre-averaging approach," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2249-2276, July.
    3. Christina D. Wang & Per A. Mykland, 2014. "The Estimation of Leverage Effect With High-Frequency Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 197-215, March.
    4. Ilze Kalnina & Dacheng Xiu, 2017. "Nonparametric Estimation of the Leverage Effect: A Trade-Off Between Robustness and Efficiency," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 384-396, January.
    5. Longjin Lv & Changjuan Zheng & Luna Wang & Benjamin Miranda Tabak, 2022. "Option Pricing under the Subordinated Market Models," Discrete Dynamics in Nature and Society, Hindawi, vol. 2022, pages 1-8, January.
    6. Hens, Thorsten & Steude, Sven C., 2009. "The leverage effect without leverage," Finance Research Letters, Elsevier, vol. 6(2), pages 83-94, June.
    7. Kinnebrock, Silja & Podolskij, Mark, 2008. "A note on the central limit theorem for bipower variation of general functions," Stochastic Processes and their Applications, Elsevier, vol. 118(6), pages 1056-1070, June.
    8. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    9. Cecilia Mancini, 2009. "Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296, June.
    10. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    11. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Jing-Zhi & Ni, Jun & Xu, Li, 2022. "Leverage effect in cryptocurrency markets," Pacific-Basin Finance Journal, Elsevier, vol. 73(C).
    2. Linton, Oliver & Whang, Yoon-Jae & Yen, Yu-Min, 2016. "A nonparametric test of a strong leverage hypothesis," Journal of Econometrics, Elsevier, vol. 194(1), pages 153-186.
    3. Christensen, K. & Podolskij, M. & Thamrongrat, N. & Veliyev, B., 2017. "Inference from high-frequency data: A subsampling approach," Journal of Econometrics, Elsevier, vol. 197(2), pages 245-272.
    4. Li, Yingying & Liu, Guangying & Zhang, Zhiyuan, 2022. "Volatility of volatility: Estimation and tests based on noisy high frequency data with jumps," Journal of Econometrics, Elsevier, vol. 229(2), pages 422-451.
    5. Linton, Oliver & Whang, Yoon-Jae & Yen, Yu-Min, 2016. "A nonparametric test of a strong leverage hypothesis," Journal of Econometrics, Elsevier, vol. 194(1), pages 153-186.
    6. Yuan, Huiling & Zhou, Yong & Xu, Lu & Sun, Yulei & Cui, Xiangyu, 2020. "A New Volatility Model: GQARCH-Ito Model," SocArXiv hkzdr, Center for Open Science.
    7. Jacod, Jean & Klüppelberg, Claudia & Müller, Gernot, 2017. "Testing for non-correlation between price and volatility jumps," Journal of Econometrics, Elsevier, vol. 197(2), pages 284-297.
    8. Yacine Aït-Sahalia & Jianqing Fan & Roger J. A. Laeven & Christina Dan Wang & Xiye Yang, 2017. "Estimation of the Continuous and Discontinuous Leverage Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1744-1758, October.
    9. Ericsson, Jan & Huang, Xiao & Mazzotta, Stefano, 2016. "Leverage and asymmetric volatility: The firm-level evidence," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 1-21.
    10. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility regressions with fat tails," Journal of Econometrics, Elsevier, vol. 218(2), pages 690-713.
    11. Ilze Kalnina & Dacheng Xiu, 2017. "Nonparametric Estimation of the Leverage Effect: A Trade-Off Between Robustness and Efficiency," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 384-396, January.
    12. Bibinger, Markus & Neely, Christopher & Winkelmann, Lars, 2019. "Estimation of the discontinuous leverage effect: Evidence from the NASDAQ order book," Journal of Econometrics, Elsevier, vol. 209(2), pages 158-184.
    13. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    14. Qiang Liu & Zhi Liu & Chuanhai Zhang, 2020. "Heteroscedasticity test of high-frequency data with jumps and microstructure noise," Papers 2010.07659, arXiv.org.
    15. Yang, Xinxin & Zheng, Xinghua & Chen, Jiaqi, 2021. "Testing high-dimensional covariance matrices under the elliptical distribution and beyond," Journal of Econometrics, Elsevier, vol. 221(2), pages 409-423.
    16. Giacomo Toscano & Giulia Livieri & Maria Elvira Mancino & Stefano Marmi, 2021. "Volatility of volatility estimation: central limit theorems for the Fourier transform estimator and empirical study of the daily time series stylized facts," Papers 2112.14529, arXiv.org, revised Sep 2022.
    17. Simon Clinet & Yoann Potiron, 2021. "Estimation for high-frequency data under parametric market microstructure noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 649-669, August.
    18. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    19. El Euch Omar & Fukasawa Masaaki & Rosenbaum Mathieu, 2016. "The microstructural foundations of leverage effect and rough volatility," Papers 1609.05177, arXiv.org.
    20. Antoine Lejay & Paolo Pigato, 2019. "A Threshold Model For Local Volatility: Evidence Of Leverage And Mean Reversion Effects On Historical Data," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-24, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2511-:d:866277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.