IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v23y1998i6p489-495.html
   My bibliography  Save this item

Factorizing changes in energy and environmental indicators through decomposition

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
  2. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
  3. Feng Dong & Ruyin Long & Hong Chen & Xiaohui Li & Qingliang Yang, 2013. "Factors Affecting Regional Per-Capita Carbon Emissions in China Based on an LMDI Factor Decomposition Model," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-10, December.
  4. Jiyong Park & Taeyoung Jin & Sungin Lee & Jongroul Woo, 2021. "Industrial Electrification and Efficiency: Decomposition Evidence from the Korean Industrial Sector," Energies, MDPI, vol. 14(16), pages 1-18, August.
  5. M'raihi, Rafaa & Mraihi, Talel & Harizi, Riadh & Taoufik Bouzidi, Mohamed, 2015. "Carbon emissions growth and road freight: Analysis of the influencing factors in Tunisia," Transport Policy, Elsevier, vol. 42(C), pages 121-129.
  6. Sheng-Wen Tseng, 2019. "Analysis of Energy-Related Carbon Emissions in Inner Mongolia, China," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
  7. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
  8. Lingling Chen & Brijesh Thapa & Wei Yan, 2018. "The Relationship between Tourism, Carbon Dioxide Emissions, and Economic Growth in the Yangtze River Delta, China," Sustainability, MDPI, vol. 10(7), pages 1-20, June.
  9. Tao Jin & Taiyang Zhong, 2022. "Changing rice cropping patterns and their impact on food security in southern China," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(4), pages 907-917, August.
  10. Jiang, Xueting, 2023. "Rapid decarbonization in the Chinese electric power sector and air pollution reduction Co-benefits in the Post-COP26 Era," Resources Policy, Elsevier, vol. 82(C).
  11. Atalla, Tarek & Bean, Patrick, 2017. "Determinants of energy productivity in 39 countries: An empirical investigation," Energy Economics, Elsevier, vol. 62(C), pages 217-229.
  12. Lingming Chen & Congjia Huo, 2021. "Impact of Green Innovation Efficiency on Carbon Emission Reduction in the Guangdong-Hong Kong-Macao GBA," Sustainability, MDPI, vol. 13(23), pages 1-22, December.
  13. Lin, Boqiang & Zhang, Zihan, 2016. "Carbon emissions in China׳s cement industry: A sector and policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1387-1394.
  14. Yao Qian & Lang Sun & Quanyi Qiu & Lina Tang & Xiaoqi Shang & Chengxiu Lu, 2020. "Analysis of CO 2 Drivers and Emissions Forecast in a Typical Industry-Oriented County: Changxing County, China," Energies, MDPI, vol. 13(5), pages 1-21, March.
  15. Jorge Cunha & Manuel Lopes Nunes & Fátima Lima, 2018. "Discerning the factors explaining the change in energy efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 163-179, December.
  16. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.
  17. Jieting Yin & Chaowei Huang, 2022. "Analysis on Influencing Factors Decomposition and Decoupling Effect of Power Carbon Emissions in Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(22), pages 1-26, November.
  18. Song, Jianfeng & Yin, Yali & Xu, Hang & Wang, Yubao & Wu, Pute & Sun, Shikun, 2020. "Drivers of domestic grain virtual water flow: A study for China," Agricultural Water Management, Elsevier, vol. 239(C).
  19. González, Domingo & Martínez, Manuel, 2012. "Changes in CO2 emission intensities in the Mexican industry," Energy Policy, Elsevier, vol. 51(C), pages 149-163.
  20. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
  21. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2020. "The methane footprint of nations: Stylized facts from a global panel dataset," Ecological Economics, Elsevier, vol. 170(C).
  22. Yang, Xue & Wang, Shaojian & Zhang, Wenzhong & Li, Jiaming & Zou, Yafeng, 2016. "Impacts of energy consumption, energy structure, and treatment technology on SO2 emissions: A multi-scale LMDI decomposition analysis in China," Applied Energy, Elsevier, vol. 184(C), pages 714-726.
  23. Sandeep Kumar Kujur, 2018. "Impact of Technological Change on Employment: Evidence from the Organised Manufacturing Industry in India," The Indian Journal of Labour Economics, Springer;The Indian Society of Labour Economics (ISLE), vol. 61(2), pages 339-376, June.
  24. Monjon, Stéphanie & Quirion, Philippe, 2011. "Addressing leakage in the EU ETS: Border adjustment or output-based allocation?," Ecological Economics, Elsevier, vol. 70(11), pages 1957-1971, September.
  25. Beöthy, Ákos & Kácsor, Enikő & Bartek-Lesi, Mária & Kerekes, Lajos & Kotek, Péter, 2019. "Energiaköltségek hatása a feldolgozóipar költség-versenyképességére [Energy costs and cost competitiveness in the manufacturing sector]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(3), pages 256-285.
  26. Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2006. "Dynamics of energy-related CO2 emissions in China during 1980 to 2002: The relative importance of energy supply-side and demand-side effects," Energy Policy, Elsevier, vol. 34(18), pages 3549-3572, December.
  27. Yan Yan & Ancheng Pan & Chunyou Wu & Shusen Gui, 2019. "Factors Influencing Indirect Carbon Emission of Residential Consumption in China: A Case of Liaoning Province," Sustainability, MDPI, vol. 11(16), pages 1-22, August.
  28. Rensfeldt, Arvid & Pariyawong, Vorapat & Fujii, Hidemichi, 2015. "Corporate environmental management and GHG emissions changes: Empirical study of multinational automobile companies," MPRA Paper 66264, University Library of Munich, Germany.
  29. Huang, Jian-Bai & Luo, Yu-Mei & Feng, Chao, 2019. "An overview of carbon dioxide emissions from China's ferrous metal industry: 1991-2030," Resources Policy, Elsevier, vol. 62(C), pages 541-549.
  30. Ronald E. Miller & Umed Temurshoev, 2017. "Output Upstreamness and Input Downstreamness of Industries/Countries in World Production," International Regional Science Review, , vol. 40(5), pages 443-475, September.
  31. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
  32. Fujii, Hidemichi & Managi, Shunsuke, 2019. "Decomposition analysis of sustainable green technology inventions in China," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 10-16.
  33. Zhang, Wei & Wang, Nan, 2021. "Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment," Energy, Elsevier, vol. 221(C).
  34. Shan Yang & Shangkai Zhu & Gao Deng & Huan Li, 2022. "Study on Influencing Factors and Spatial Effects of Carbon Emissions Based on Logarithmic Mean Divisia Index Model: A Case Study of Hunan Province," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
  35. Li, Aijun & Hu, Mingming & Wang, Mingjian & Cao, Yinxue, 2016. "Energy consumption and CO2 emissions in Eastern and Central China: A temporal and a cross-regional decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 284-297.
  36. GUPTA Monika, 2019. "Decomposing The Role Of Different Factors In Co2 Emissions Increase In South Asia," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(1), pages 72-86, April.
  37. Deguo Su & Beibei Tan & Anbing Zhang & Yikai Hou, 2023. "Analysis of the Influencing Factors of Power Demand in Beijing Based on the LMDI Model," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
  38. Xie, Xuan & Lin, Boqiang, 2019. "Understanding the energy intensity change in China's food industry: A comprehensive decomposition method," Energy Policy, Elsevier, vol. 129(C), pages 53-68.
  39. Zhou, Xiaoyan & Zhang, Jie & Li, Junpeng, 2013. "Industrial structural transformation and carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 57(C), pages 43-51.
  40. Chen, Yufeng & Miao, Jiafeng, 2023. "What Determines China’s Agricultural Non-Point Source Pollution? An Improved LMDI Decomposition Analysis," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 48(2), May.
  41. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
  42. Alarenan, Shahad & Gasim, Anwar A. & Hunt, Lester C., 2020. "Modelling industrial energy demand in Saudi Arabia," Energy Economics, Elsevier, vol. 85(C).
  43. Cheng, Shulei & Wang, Ping & Chen, Boyang & Fan, Wei, 2022. "Decoupling and decomposition analysis of CO2 emissions from government spending in China," Energy, Elsevier, vol. 243(C).
  44. Chung, Hyun-Sik & Rhee, Hae-Chun, 2001. "A residual-free decomposition of the sources of carbon dioxide emissions: a case of the Korean industries," Energy, Elsevier, vol. 26(1), pages 15-30.
  45. Fujii, Hidemichi & Managi, Shunsuke, 2016. "Research and development strategy for environmental technology in Japan: A comparative study of the private and public sectors," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 293-302.
  46. Santillán Vera, Mónica & García Manrique, Lilia & Rodríguez Peña, Isabel & De La Vega Navarro, Angel, 2023. "Drivers of electricity GHG emissions and the role of natural gas in mexican energy transition," Energy Policy, Elsevier, vol. 173(C).
  47. Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
  48. Tian, Xu & Bruckner, Martin & Geng, Yong & Bleischwitz, Raimund, 2019. "Trends and driving forces of China’s virtual land consumption and trade," Land Use Policy, Elsevier, vol. 89(C).
  49. Zhang, Cheng & Zhao, Ziwei & Wang, Qunwei & Xu, Bing, 2022. "Title: Holistic governance strategy to reduce carbon intensity," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
  50. Bei Zeng & Haihua Lyu & Zhenyue Zhao & Jiang Li, 2021. "Exploring the direction and diversity of interdisciplinary knowledge diffusion: A case study of professor Zeyuan Liu's scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6253-6272, July.
  51. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
  52. Jiang, Xueting, 2022. "Drivers of air pollution reduction paradox: Empirical evidence from directly measured unit-level data of Chinese power plants," Energy, Elsevier, vol. 254(PB).
  53. Linhe Chen & Yanhong Hang & Quanfeng Li, 2023. "Spatial-Temporal Characteristics and Influencing Factors of Carbon Emissions from Land Use and Land Cover in Black Soil Region of Northeast China Based on LMDI Simulation," Sustainability, MDPI, vol. 15(12), pages 1-25, June.
  54. Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).
  55. Kaltenegger, Oliver, 2020. "What drives total real unit energy costs globally? A novel LMDI decomposition approach," Applied Energy, Elsevier, vol. 261(C).
  56. Suyi Kim, 2019. "Decomposition Analysis of Greenhouse Gas Emissions in Korea’s Transportation Sector," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
  57. Jiandong Chen & Ping Wang & Jixian Zhou & Malin Song & Xinyue Zhang, 2022. "Influencing factors and efficiency of funds in humanitarian supply chains: the case of Chinese rural minimum living security funds," Annals of Operations Research, Springer, vol. 319(1), pages 413-438, December.
  58. Changjian Wang & Fei Wang & Hongou Zhang & Yuyao Ye & Qitao Wu & Yongxian Su, 2014. "Carbon Emissions Decomposition and Environmental Mitigation Policy Recommendations for Sustainable Development in Shandong Province," Sustainability, MDPI, vol. 6(11), pages 1-16, November.
  59. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27," Energy Policy, Elsevier, vol. 68(C), pages 576-584.
  60. Yang, Jing & Song, Kaihui & Hou, Jian & Zhang, Peidong & Wu, Jinhu, 2017. "Temporal and spacial dynamics of bioenergy-related CO2 emissions and underlying forces analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1323-1330.
  61. Kim, Kyunam & Kim, Yeonbae, 2012. "International comparison of industrial CO2 emission trends and the energy efficiency paradox utilizing production-based decomposition," Energy Economics, Elsevier, vol. 34(5), pages 1724-1741.
  62. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
  63. Román-Collado, Rocío & Morales-Carrión, Any Viviana, 2018. "Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO2 emissions changes," Energy Policy, Elsevier, vol. 115(C), pages 273-280.
  64. Chen, Jiandong & Fan, Wei & Li, Ding & Liu, Xin & Song, Malin, 2020. "Driving factors of global carbon footprint pressure: Based on vegetation carbon sequestration," Applied Energy, Elsevier, vol. 267(C).
  65. Andrew Chapman & Hidemichi Fujii & Shunsuke Managi, 2018. "Key Drivers for Cooperation toward Sustainable Development and the Management of CO 2 Emissions: Comparative Analysis of Six Northeast Asian Countries," Sustainability, MDPI, vol. 10(1), pages 1-12, January.
  66. Nagashima, Fumiya, 2018. "The sign reversal problem in structural decomposition analysis," Energy Economics, Elsevier, vol. 72(C), pages 307-312.
  67. Ang, B.W. & Huang, H.C. & Mu, A.R., 2009. "Properties and linkages of some index decomposition analysis methods," Energy Policy, Elsevier, vol. 37(11), pages 4624-4632, November.
  68. Eric Fosu Oteng-Abayie & Foster Awindolla Asaki & Maame Esi Eshun & Eric Abokyi, 2022. "Decomposition of the decoupling of CO2 emissions from economic growth in Ghana," Future Business Journal, Springer, vol. 8(1), pages 1-13, December.
  69. Zhu Liu & Biqing Zhu & Philippe Ciais & Steven J. Davis & Chenxi Lu & Haiwang Zhong & Piyu Ke & Yanan Cui & Zhu Deng & Duo Cui & Taochun Sun & Xinyu Dou & Jianguang Tan & Rui Guo & Bo Zheng & Katsumas, 2021. "De-carbonization of global energy use during the COVID-19 pandemic," Papers 2102.03240, arXiv.org.
  70. Ang, B.W. & Liu, Na, 2007. "Handling zero values in the logarithmic mean Divisia index decomposition approach," Energy Policy, Elsevier, vol. 35(1), pages 238-246, January.
  71. Ivan Mendieta‐Muñoz & Codrina Rada & Rudi von Arnim, 2021. "The Decline of the US Labor Share Across Sectors," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 67(3), pages 732-758, September.
  72. Changfeng Shi & Hang Yuan & Qinghua Pang & Yangyang Zhang, 2020. "Research on the Decoupling of Water Resources Utilization and Agricultural Economic Development in Gansu Province from the Perspective of Water Footprint," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
  73. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
  74. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2018. "How can Chile move away from a high carbon economy?," Energy Economics, Elsevier, vol. 69(C), pages 350-366.
  75. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
  76. Norman, Jonathan B., 2017. "Measuring improvements in industrial energy efficiency: A decomposition analysis applied to the UK," Energy, Elsevier, vol. 137(C), pages 1144-1151.
  77. Xiafei Chen & Zhiying Liu & Chaoliang Ma, 2017. "Chinese innovation-driving factors: regional structure, innovation effect, and economic development—empirical research based on panel data," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 59(1), pages 43-68, July.
  78. Baležentis, Alvydas & Baležentis, Tomas & Streimikiene, Dalia, 2011. "The energy intensity in Lithuania during 1995–2009: A LMDI approach," Energy Policy, Elsevier, vol. 39(11), pages 7322-7334.
  79. Yang, Lisha & Lin, Boqiang, 2016. "Carbon dioxide-emission in China׳s power industry: Evidence and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 258-267.
  80. Xi Chen & Yingying Zhen & Zhanming Chen, 2023. "Household Carbon Footprint Characteristics and Driving Factors: A Global Comparison Based on a Dynamic Input–Output Model," Energies, MDPI, vol. 16(9), pages 1-18, May.
  81. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
  82. Qingquan Jiang & Jinhuang Lin & Qianqian Wei & Rui Zhang & Hongzhen Fu, 2023. "Demystifying the Economic Growth and CO 2 Nexus in Fujian’s Key Industries Based on Decoupling and LMDI Model," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
  83. Liu, Zhe & Adams, Michelle & Cote, Raymond P. & Geng, Yong & Chen, Qinghua & Liu, Weili & Sun, Lu & Yu, Xiaoman, 2017. "Comprehensive development of industrial symbiosis for the response of greenhouse gases emission mitigation: Challenges and opportunities in China," Energy Policy, Elsevier, vol. 102(C), pages 88-95.
  84. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
  85. Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
  86. Mathy, Sandrine & Menanteau, Philippe & Criqui, Patrick, 2018. "After the Paris Agreement: Measuring the Global Decarbonization Wedges From National Energy Scenarios," Ecological Economics, Elsevier, vol. 150(C), pages 273-289.
  87. Mussini, Mauro, 2020. "An index decomposition analysis of tourism demand change," Annals of Tourism Research, Elsevier, vol. 85(C).
  88. Fei Wang & Changjian Wang & Yongxian Su & Lixia Jin & Yang Wang & Xinlin Zhang, 2017. "Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
  89. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2009. "Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis," Energy, Elsevier, vol. 34(1), pages 90-111.
  90. Aldubyan, Mohammad & Gasim, Anwar, 2021. "Energy price reform in Saudi Arabia: Modeling the economic and environmental impacts and understanding the demand response," Energy Policy, Elsevier, vol. 148(PB).
  91. Shan-Li Wang & Feng-Wen Chen & Bing Liao & Cuiju Zhang, 2020. "Foreign Trade, FDI and the Upgrading of Regional Industrial Structure in China: Based on Spatial Econometric Model," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
  92. Rongrong Li & Rui Jiang, 2017. "Moving Low-Carbon Construction Industry in Jiangsu Province: Evidence from Decomposition and Decoupling Models," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
  93. Kang, Jidong & Zhao, Tao & Liu, Nan & Zhang, Xin & Xu, Xianshuo & Lin, Tao, 2014. "A multi-sectoral decomposition analysis of city-level greenhouse gas emissions: Case study of Tianjin, China," Energy, Elsevier, vol. 68(C), pages 562-571.
  94. Chen, Jiandong & Wang, Ping & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2018. "Decomposition and decoupling analysis of CO2 emissions in OECD," Applied Energy, Elsevier, vol. 231(C), pages 937-950.
  95. Heun, Matthew Kuperus & Brockway, Paul E., 2019. "Meeting 2030 primary energy and economic growth goals: Mission impossible?," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  96. Ren, Shenggang & Fu, Xiang & Chen, XiaoHong, 2012. "Regional variation of energy-related industrial CO2 emissions mitigation in China," China Economic Review, Elsevier, vol. 23(4), pages 1134-1145.
  97. Yue-Jun Zhang & Zhao Liu & Huan Zhang & Tai-De Tan, 2014. "The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 579-595, September.
  98. Pan, Xunzhang & Wang, Hailin & Wang, Lining & Chen, Wenying, 2018. "Decarbonization of China's transportation sector: In light of national mitigation toward the Paris Agreement goals," Energy, Elsevier, vol. 155(C), pages 853-864.
  99. Rafael Sánchez-Durán & Joaquín Luque & Julio Barbancho, 2019. "Long-Term Demand Forecasting in a Scenario of Energy Transition," Energies, MDPI, vol. 12(16), pages 1-23, August.
  100. Yuhuan Zhao & Song Wang & Jiaqin Yang & Zhonghua Zhang & Ya Liu, 2016. "Input-output analysis of carbon emissions embodied in China-Japan trade," Applied Economics, Taylor & Francis Journals, vol. 48(16), pages 1515-1529, April.
  101. Zhou, P. & Zhang, H. & Zhang, L.P., 2022. "The drivers of energy intensity changes in Chinese cities: A production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 307(C).
  102. Kaltenegger, Oliver, 2019. "What drives total real unit energy costs globally? A novel LMDI decomposition approach," CAWM Discussion Papers 110, University of Münster, Münster Center for Economic Policy (MEP).
  103. Pothen, Frank & Schymura, Michael, 2015. "Bigger cakes with fewer ingredients? A comparison of material use of the world economy," Ecological Economics, Elsevier, vol. 109(C), pages 109-121.
  104. Yijing Chu & Yingying Wang & Zucheng Zhang & Shengli Dai, 2022. "Decoupling of Economic Growth and Industrial Water Use in Hubei Province: From an Ecological–Economic Interaction Perspective," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
  105. Yanan Chen & Sheng Lin, 2015. "Study on factors affecting energy-related per capita carbon dioxide emission by multi-sectoral of cities: a case study of Tianjin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 833-846, June.
  106. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
  107. Yuzhuo Huang & Yosuke Shigetomi & Andrew Chapman & Ken’ichi Matsumoto, 2019. "Uncovering Household Carbon Footprint Drivers in an Aging, Shrinking Society," Energies, MDPI, vol. 12(19), pages 1-18, September.
  108. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
  109. Schymura, Michael & Voigt, Sebastian, 2014. "What drives changes in carbon emissions? An index decomposition approach for 40 countries," ZEW Discussion Papers 14-038, ZEW - Leibniz Centre for European Economic Research.
  110. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
  111. Jiang, Shan & Zhu, Yongnan & He, Guohua & Wang, Qingming & Lu, Yajing, 2020. "Factors influencing China’s non-residential power consumption: Estimation using the Kaya–LMDI methods," Energy, Elsevier, vol. 201(C).
  112. Gideon Nkam Taka & Ta Thi Huong & Izhar Hussain Shah & Hung-Suck Park, 2020. "Determinants of Energy-Based CO 2 Emissions in Ethiopia: A Decomposition Analysis from 1990 to 2017," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
  113. Zhao, Xingrong & Zhang, Xi & Shao, Shuai, 2016. "Decoupling CO2 emissions and industrial growth in China over 1993–2013: The role of investment," Energy Economics, Elsevier, vol. 60(C), pages 275-292.
  114. Shrestha, Ram M. & Anandarajah, Gabrial & Liyanage, Migara H., 2009. "Factors affecting CO2 emission from the power sector of selected countries in Asia and the Pacific," Energy Policy, Elsevier, vol. 37(6), pages 2375-2384, June.
  115. Zha, Donglan & Yang, Guanglei & Wang, Qunwei, 2019. "Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method," Energy Economics, Elsevier, vol. 84(C).
  116. GUPTA Monika & SINGH Sanjay, 2016. "Factorizing The Changes In Co2 Emissions From Indian Road Passenger Transport: A Decomposition Analysis," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 11(3), pages 67-83, December.
  117. Li, Huimin & Wu, Tong & Zhao, Xiaofan & Wang, Xiao & Qi, Ye, 2014. "Regional disparities and carbon “outsourcing”: The political economy of China's energy policy," Energy, Elsevier, vol. 66(C), pages 950-958.
  118. Fang, Debin & Hao, Peng & Hao, Jian, 2019. "Study of the influence mechanism of China's electricity consumption based on multi-period ST-LMDI model," Energy, Elsevier, vol. 170(C), pages 730-743.
  119. Manel Daldoul & Ahlem Dakhlaoui, 2018. "Using the LMDI Decomposition Approach to Analyze the Influencing Factors of Carbon Emissions in Tunisian Transportation Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 22-28.
  120. Wan, Shulin & Luan, Weixin, 2022. "Hinterland evolution and port growth decomposition: The case of Shanghai," Journal of Transport Geography, Elsevier, vol. 100(C).
  121. Lin, Boqiang & Wang, Xiaolei, 2015. "Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 746-754.
  122. Hidemichi Fujii & Kentaro Yoshida & Ken Sugimura, 2016. "Research and Development Strategy in Biological Technologies: A Patent Data Analysis of Japanese Manufacturing Firms," Sustainability, MDPI, vol. 8(4), pages 1-15, April.
  123. Hidemichi Fujii & Shunsuke Managi, 2013. "Decomposition of Toxic Chemical Substance Management in Three U.S. Manufacturing Sectors from 1991 to 2008," Journal of Industrial Ecology, Yale University, vol. 17(3), pages 461-471, June.
  124. Li Li & Di Liu & Jian Hou & Dandan Xu & Wenbo Chao, 2019. "The Study of the Impact of Carbon Finance Effect on Carbon Emissions in Beijing-Tianjin-Hebei Region—Based on Logarithmic Mean Divisia Index Decomposition Analysis," Sustainability, MDPI, vol. 11(5), pages 1-12, March.
  125. Guglielmo Maria Caporale & Gloria Claudio-Quiroga & Luis A. Gil-Alana, 2019. "CO2 Emissions and GDP: Evidence from China," CESifo Working Paper Series 7881, CESifo.
  126. de Boer, P.M.C., 2006. "Structural decomposition analysis and index number theory: an empirical application of the Montgomery decomposition," Econometric Institute Research Papers EI 2006-39, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  127. Gingrich, Simone & Kusková, Petra & Steinberger, Julia K., 2011. "Long-term changes in CO2 emissions in Austria and Czechoslovakia--Identifying the drivers of environmental pressures," Energy Policy, Elsevier, vol. 39(2), pages 535-543, February.
  128. Pan He & Beiming Cai & Giovanni Baiocchi & Zhu Liu, 2021. "Drivers of GHG emissions from dietary transition patterns in China: Supply versus demand options," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 707-719, June.
  129. Lin, Boqiang & Long, Houyin, 2014. "Promoting carbon emissions reduction in China's chemical process industry," Energy, Elsevier, vol. 77(C), pages 822-830.
  130. Jing-Li Fan & Zhe Cao & Mian Zhang & Li Liu & Xian Zhang, 2019. "Evolution of CO2 emissions and driving factors in the Tongzhou District in Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 381-399, January.
  131. Mariana Conte Grand, 2018. "Desacople y Descomposición del Consumo Final de Energía en Argentina," CEMA Working Papers: Serie Documentos de Trabajo. 678, Universidad del CEMA.
  132. Jinhe Jiang, 2017. "The decomposition and policy meaning of China’s carbon emission intensity," Evolutionary and Institutional Economics Review, Springer, vol. 14(1), pages 295-310, June.
  133. Cahill, Caiman J. & Ó Gallachóir, Brian P., 2012. "Combining physical and economic output data to analyse energy and CO2 emissions trends in industry," Energy Policy, Elsevier, vol. 49(C), pages 422-429.
  134. Fujii, Hidemichi & Managi, Shunsuke, 2018. "Trends and priority shifts in artificial intelligence technology invention: A global patent analysis," Economic Analysis and Policy, Elsevier, vol. 58(C), pages 60-69.
  135. Sobrino, Natalia & Monzon, Andres, 2014. "The impact of the economic crisis and policy actions on GHG emissions from road transport in Spain," Energy Policy, Elsevier, vol. 74(C), pages 486-498.
  136. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
  137. Liu, Zhe & Adams, Michelle & Cote, Raymond P. & Chen, Qinghua & Wu, Rui & Wen, Zongguo & Liu, Weili & Dong, Liang, 2018. "How does circular economy respond to greenhouse gas emissions reduction: An analysis of Chinese plastic recycling industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1162-1169.
  138. Shao, Shuai & Yang, Lili & Gan, Chunhui & Cao, Jianhua & Geng, Yong & Guan, Dabo, 2016. "Using an extended LMDI model to explore techno-economic drivers of energy-related industrial CO2 emission changes: A case study for Shanghai (China)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 516-536.
  139. Zhang, Hongyu & Zhang, Da & Zhang, Xiliang, 2023. "The role of output-based emission trading system in the decarbonization of China's power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
  140. Chai, Jian & Guo, Ju-E & Wang, Shou-Yang & Lai, Kin Keung, 2009. "Why does energy intensity fluctuate in China?," Energy Policy, Elsevier, vol. 37(12), pages 5717-5731, December.
  141. Kunlun Chen & Xiaoqiong Liu & Lei Ding & Gengzhi Huang & Zhigang Li, 2016. "Spatial Characteristics and Driving Factors of Provincial Wastewater Discharge in China," IJERPH, MDPI, vol. 13(12), pages 1-19, December.
  142. Ma, Chunbo & Stern, David I., 2008. "Biomass and China's carbon emissions: A missing piece of carbon decomposition," Energy Policy, Elsevier, vol. 36(7), pages 2517-2526, July.
  143. Lu Wan & Zi-Long Wang & Jhony Choon Yeong Ng, 2016. "Measurement Research on the Decoupling Effect of Industries’ Carbon Emissions—Based on the Equipment Manufacturing Industry in China," Energies, MDPI, vol. 9(11), pages 1-17, November.
  144. Feipeng Guo & Linji Zhang & Zifan Wang & Shaobo Ji, 2022. "Research on Determining the Critical Influencing Factors of Carbon Emission Integrating GRA with an Improved STIRPAT Model: Taking the Yangtze River Delta as an Example," IJERPH, MDPI, vol. 19(14), pages 1-20, July.
  145. Gambhir, Ajay & Tse, Lawrence K.C. & Tong, Danlu & Martinez-Botas, Ricardo, 2015. "Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis," Applied Energy, Elsevier, vol. 157(C), pages 905-917.
  146. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2018. "Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 748-761.
  147. Zhang, Zhaoguo & Jin, Xiaocui & Yang, Qingxiang & Zhang, Yi, 2013. "An empirical study on the institutional factors of energy conservation and emissions reduction: Evidence from listed companies in China," Energy Policy, Elsevier, vol. 57(C), pages 36-42.
  148. Weiguo Fan & Mengmeng Meng & Jianchang Lu & Xiaobin Dong & Hejie Wei & Xuechao Wang & Qing Zhang, 2020. "Decoupling Elasticity and Driving Factors of Energy Consumption and Economic Development in the Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
  149. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
  150. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
  151. Zhao, Xiaoli & Ma, Chunbo & Hong, Dongyue, 2010. "Why did China's energy intensity increase during 1998-2006: Decomposition and policy analysis," Energy Policy, Elsevier, vol. 38(3), pages 1379-1388, March.
  152. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
  153. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.
  154. Rongrong Li & Rui Jiang, 2019. "Is carbon emission decline caused by economic decline? Empirical evidence from Russia," Energy & Environment, , vol. 30(4), pages 672-684, June.
  155. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2017. "Decomposing inequality in energy-related CO2 emissions by source and source increment: The roles of production and residential consumption," Energy Policy, Elsevier, vol. 107(C), pages 698-710.
  156. Li, Li & Hong, Xuefei & Wang, Jun, 2020. "Evaluating the impact of clean energy consumption and factor allocation on China’s air pollution: A spatial econometric approach," Energy, Elsevier, vol. 195(C).
  157. Wang, Zhaojing & Jiang, Qingzhe & Dong, Kangyin & Mubarik, Muhammad Shujaat & Dong, Xiucheng, 2020. "Decomposition of the US CO2 emissions and its mitigation potential: An aggregate and sectoral analysis," Energy Policy, Elsevier, vol. 147(C).
  158. Pothen, Frank & Schymura, Michael, 2014. "Bigger cakes with less ingredients? A comparison of material use of the world economy," ZEW Discussion Papers 14-030, ZEW - Leibniz Centre for European Economic Research.
  159. Ma, Chunbo & Stern, David I., 2008. "China's changing energy intensity trend: A decomposition analysis," Energy Economics, Elsevier, vol. 30(3), pages 1037-1053, May.
  160. Pani, Ratnakar & Mukhopadhyay, Ujjaini, 2013. "Management accounting approach to analyse energy related CO2 emission: A variance analysis study of top 10 emitters of the world," Energy Policy, Elsevier, vol. 52(C), pages 639-655.
  161. Ning Ding & Ning Liu & Bin Lu & Jianxin Yang, 2021. "Life cycle greenhouse gas emissions of aluminum based on regional industrial transfer in China," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1657-1672, December.
  162. Chen, Jiandong & Xie, Qiaoli & Shahbaz, Muhammad & Song, Malin & Li, Li, 2022. "Impact of bilateral trade on fossil energy consumption in BRICS: An extended decomposition analysis," Economic Modelling, Elsevier, vol. 106(C).
  163. Azenui, Ngwinui Belinda & Rada, Codrina, 2021. "Labor productivity growth in sub-Sahara African LDCs: sectoral contributions and macroeconomic factors," Structural Change and Economic Dynamics, Elsevier, vol. 56(C), pages 10-26.
  164. Lin, Yuancheng & Ma, Linwei & Li, Zheng & Ni, Weidou, 2023. "The carbon reduction potential by improving technical efficiency from energy sources to final services in China: An extended Kaya identity analysis," Energy, Elsevier, vol. 263(PE).
  165. Wu, Ya & Zhu, Qianwen & Zhong, Ling & Zhang, Tao, 2019. "Energy consumption in the transportation sectors in China and the United States: A longitudinal comparative study," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 349-360.
  166. David Font Vivanco & René Kemp & Ester Voet & Reinout Heijungs, 2014. "Using LCA-based Decomposition Analysis to Study the Multidimensional Contribution of Technological Innovation to Environmental Pressures," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 380-392, May.
  167. Shogo Eguchi, 2022. "CO 2 Reduction Potential from Efficiency Improvements in China’s Coal-Fired Thermal Power Generation: A Combined Approach of Metafrontier DEA and LMDI," Energies, MDPI, vol. 15(7), pages 1-19, March.
  168. Shaojian Wang & Chuanglin Fang & Guangdong Li, 2015. "Spatiotemporal Characteristics, Determinants and Scenario Analysis of CO2 Emissions in China Using Provincial Panel Data," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-23, September.
  169. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
  170. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
  171. Pani, Ratnakar & Mukhopadhyay, Ujjaini, 2011. "Variance analysis of global CO2 emission – A management accounting approach for decomposition study," Energy, Elsevier, vol. 36(1), pages 486-499.
  172. Qingsong Wang & Ping Liu & Xueliang Yuan & Xingxing Cheng & Rujian Ma & Ruimin Mu & Jian Zuo, 2015. "Structural Evolution of Household Energy Consumption: A China Study," Sustainability, MDPI, vol. 7(4), pages 1-14, April.
  173. Xin Yang & Chunbo Ma & Anlu Zhang, 2016. "Decomposition of Net CO 2 Emission in the Wuhan Metropolitan Area of Central China," Sustainability, MDPI, vol. 8(8), pages 1-13, August.
  174. Jaruwan Chontanawat, 2019. "Driving Forces of Energy-Related CO 2 Emissions Based on Expanded IPAT Decomposition Analysis: Evidence from ASEAN and Four Selected Countries," Energies, MDPI, vol. 12(4), pages 1-23, February.
  175. Cheng, Shulei & Wu, Yinyin & Chen, Hua & Chen, Jiandong & Song, Malin & Hou, Wenxuan, 2019. "Determinants of changes in electricity generation intensity among different power sectors," Energy Policy, Elsevier, vol. 130(C), pages 389-408.
  176. Paul, Shyamal & Bhattacharya, Rabindra Nath, 2004. "CO2 emission from energy use in India: a decomposition analysis," Energy Policy, Elsevier, vol. 32(5), pages 585-593, March.
  177. Guang, Fengtao & Wen, Le & Sharp, Basil, 2022. "Energy efficiency improvements and industry transition: An analysis of China's electricity consumption," Energy, Elsevier, vol. 244(PA).
  178. Fujii, Hidemichi & Shirakawa, Seiji, 2015. "Decomposition analysis of green chemical technology inventions from 1971 to 2010 in Japan," MPRA Paper 62790, University Library of Munich, Germany.
  179. Lin, Boqiang & Long, Houyin, 2016. "Emissions reduction in China׳s chemical industry – Based on LMDI," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1348-1355.
  180. Geoffrey Udoka Nnadiri & Anthony S. F. Chiu & Jose Bienvenido Manuel Biona & Neil Stephen Lopez, 2021. "Comparison of Driving Forces to Increasing Traffic Flow and Transport Emissions in Philippine Regions: A Spatial Decomposition Study," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
  181. Alajmi, Reema Gh, 2021. "Factors that impact greenhouse gas emissions in Saudi Arabia: Decomposition analysis using LMDI," Energy Policy, Elsevier, vol. 156(C).
  182. Jung, Seok & An, Kyoung-Jin & Dodbiba, Gjergj & Fujita, Toyohisa, 2012. "Regional energy-related carbon emission characteristics and potential mitigation in eco-industrial parks in South Korea: Logarithmic mean Divisia index analysis based on the Kaya identity," Energy, Elsevier, vol. 46(1), pages 231-241.
  183. Shi, Kaifang & Yu, Bailang & Zhou, Yuyu & Chen, Yun & Yang, Chengshu & Chen, Zuoqi & Wu, Jianping, 2019. "Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels," Applied Energy, Elsevier, vol. 233, pages 170-181.
  184. Zbigniew Gołaś, 2023. "Decoupling Analysis of Energy-Related Carbon Dioxide Emissions from Economic Growth in Poland," Energies, MDPI, vol. 16(9), pages 1-27, April.
  185. Jinpeng Liu & Delin Wei, 2020. "Analysis and Measurement of Carbon Emission Aggregation and Spillover Effects in China: Based on a Sectoral Perspective," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
  186. Yiyi Cao & Li Chai & Xianglin Yan & Yi Liang, 2020. "Drivers of the Growing Water, Carbon and Ecological Footprints of the Chinese Diet from 1961 to 2017," IJERPH, MDPI, vol. 17(5), pages 1-12, March.
  187. Paul De Boer, 2008. "Additive Structural Decomposition Analysis and Index Number Theory: An Empirical Application of the Montgomery Decomposition," Economic Systems Research, Taylor & Francis Journals, vol. 20(1), pages 97-109.
  188. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
  189. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2016. "Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case," Energy Policy, Elsevier, vol. 89(C), pages 114-124.
  190. Yi, Hongtao, 2015. "Clean-energy policies and electricity sector carbon emissions in the U.S. states," Utilities Policy, Elsevier, vol. 34(C), pages 19-29.
  191. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
  192. Tang, Chengcai & Zhong, Linsheng & Ng, Pin, 2017. "Factors that Influence the Tourism Industry's Carbon Emissions: a Tourism Area Life Cycle Model Perspective," Energy Policy, Elsevier, vol. 109(C), pages 704-718.
  193. Jidong Kang & Tao Zhao & Xiaosong Ren & Tao Lin, 2012. "Using decomposition analysis to evaluate the performance of China’s 30 provinces in CO 2 emission reductions over 2005–2009," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 999-1013, November.
  194. Banie Naser Outchiri & Jie He, 2020. "Technical gap, trade partners and product mix evolution: how trading with China affects global CO2 emissions," Cahiers de recherche 20-07, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
  195. Wood, Richard, 2009. "Structural decomposition analysis of Australia's greenhouse gas emissions," Energy Policy, Elsevier, vol. 37(11), pages 4943-4948, November.
  196. Yi, Bo-Wen & Xu, Jin-Hua & Fan, Ying, 2019. "Coordination of policy goals between renewable portfolio standards and carbon caps: A quantitative assessment in China," Applied Energy, Elsevier, vol. 237(C), pages 25-35.
  197. Chun Fu & Weiqi Min & Hubei Liu, 2022. "Decomposition and Decoupling Analysis of Carbon Emissions from Cultivated Land Use in China’s Main Agricultural Producing Areas," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
  198. Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2005. "Driving forces behind the stagnancy of China's energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change," Energy Policy, Elsevier, vol. 33(3), pages 319-335, February.
  199. Xi Chen & Chenyang Shuai & Ya Wu, 2023. "Global food stability and its socio‐economic determinants towards sustainable development goal 2 (Zero Hunger)," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1768-1780, June.
  200. Wang, Yang & Liu, Yongzhang & Huang, Liqiao & Zhang, Qingyu & Gao, Wei & Sun, Qian & Li, Xi, 2022. "Decomposition the driving force of regional electricity consumption in Japan from 2001 to 2015," Applied Energy, Elsevier, vol. 308(C).
  201. Changzheng Zhu & Wenbo Du, 2019. "A Research on Driving Factors of Carbon Emissions of Road Transportation Industry in Six Asia-Pacific Countries Based on the LMDI Decomposition Method," Energies, MDPI, vol. 12(21), pages 1-19, October.
  202. Rhee, Hae-Chun & Chung, Hyun-Sik, 2006. "Change in CO2 emission and its transmissions between Korea and Japan using international input-output analysis," Ecological Economics, Elsevier, vol. 58(4), pages 788-800, July.
  203. Liang Chen & Zhifeng Yang & Bin Chen, 2013. "Decomposition Analysis of Energy-Related Industrial CO 2 Emissions in China," Energies, MDPI, vol. 6(5), pages 1-19, April.
  204. Hidemichi Fujii & Masayuki Sato & Shunsuke Managi, 2017. "Decomposition Analysis of Forest Ecosystem Services Values," Sustainability, MDPI, vol. 9(5), pages 1-14, April.
  205. Gandhi, Oktoviano & Oshiro, Andre H. & Medeiros Costa, Hirdan Katarina de & Santos, Edmilson M., 2017. "Energy intensity trend explained for Sao Paulo state," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1046-1054.
  206. Tianping Bi & Mei Zhang, 2023. "Research on Spatiotemporal Changes and Control Strategy of Carbon Emission in Shenyang," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
  207. Sun, J.W & Ang, B.W, 2000. "Some properties of an exact energy decomposition model," Energy, Elsevier, vol. 25(12), pages 1177-1188.
  208. Jianchang Lu & Weiguo Fan & Ming Meng, 2015. "Empirical Research on China’s Carbon Productivity Decomposition Model Based on Multi-Dimensional Factors," Energies, MDPI, vol. 8(4), pages 1-25, April.
  209. Lingling Chen & Lin Yi & Rongrong Cai & Hui Yang, 2022. "Spatiotemporal Characteristics of the Correlation among Tourism, CO 2 Emissions, and Economic Growth in China," Sustainability, MDPI, vol. 14(14), pages 1-31, July.
  210. Yaoben Lin & Jianhui Yang & Yanmei Ye, 2018. "Spatial–Temporal Analysis of the Relationships between Agricultural Production and Use of Agrochemicals in Eastern China and Related Environmental and Political Implications (Based on Decoupling Appro," Sustainability, MDPI, vol. 10(4), pages 1-15, March.
  211. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
  212. Qiang Du & Xinran Lu & Yi Li & Min Wu & Libiao Bai & Ming Yu, 2018. "Carbon Emissions in China’s Construction Industry: Calculations, Factors and Regions," IJERPH, MDPI, vol. 15(6), pages 1-17, June.
  213. Peng Chen & Hanwen Wang & Mingxing Guo & Jianjun Wang & Sinan Cai & Min Li & Kaining Sun & Yukun Wang, 2022. "Decomposition Analysis of Regional Embodied Carbon Flow and Driving Factors—Taking Shanghai as an Example," Sustainability, MDPI, vol. 14(17), pages 1-16, September.
  214. Ang, B. W., 1999. "Is the energy intensity a less useful indicator than the carbon factor in the study of climate change?," Energy Policy, Elsevier, vol. 27(15), pages 943-946, December.
  215. Ipek Tunç, G. & Türüt-AsIk, Serap & AkbostancI, Elif, 2009. "A decomposition analysis of CO2 emissions from energy use: Turkish case," Energy Policy, Elsevier, vol. 37(11), pages 4689-4699, November.
  216. Haein Kim & Minsang Kim & Hyunggeun Kim & Sangkyu Park, 2020. "Decomposition Analysis of CO 2 Emission from Electricity Generation: Comparison of OECD Countries before and after the Financial Crisis," Energies, MDPI, vol. 13(14), pages 1-16, July.
  217. Wang, Can & Chen, Jining & Zou, Ji, 2005. "Decomposition of energy-related CO2 emission in China: 1957–2000," Energy, Elsevier, vol. 30(1), pages 73-83.
  218. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
  219. Zhengyan Liu & Xianqiang Mao & Peng Song, 2017. "GHGs and air pollutants embodied in China’s international trade: Temporal and spatial index decomposition analysis," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-19, April.
  220. Jie-Fang Dong & Chun Deng & Xing-Min Wang & Xiao-Lei Zhang, 2016. "Multilevel Index Decomposition of Energy-Related Carbon Emissions and Their Decoupling from Economic Growth in Northwest China," Energies, MDPI, vol. 9(9), pages 1-17, August.
  221. Hammond, G.P. & Norman, J.B., 2012. "Decomposition analysis of energy-related carbon emissions from UK manufacturing," Energy, Elsevier, vol. 41(1), pages 220-227.
  222. Kesicki, Fabian & Anandarajah, Gabrial, 2011. "The role of energy-service demand reduction in global climate change mitigation: Combining energy modelling and decomposition analysis," Energy Policy, Elsevier, vol. 39(11), pages 7224-7233.
  223. Chen, Joyce J. & Pitt, Mark M., 2017. "Sources of change in the demand for energy by Indonesian households: 1980–2002," Energy Economics, Elsevier, vol. 61(C), pages 147-161.
  224. Shoumik Rahman Mehedy & Hasan Mahmud Sajib & Rezaul Karim, 2018. "Environmental Reporting Practices of Listed Companies in Bangladesh," International Journal of Academic Research in Accounting, Finance and Management Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Accounting, Finance and Management Sciences, vol. 8(3), pages 178-193, July.
  225. Zhang, Xian & Wang, Jia-Xing & Cao, Zhe & Shen, Shuo & Meng, Shuo & Fan, Jing-Li, 2021. "What is driving the remarkable decline of wind and solar power curtailment in China? Evidence from China and four typical provinces," Renewable Energy, Elsevier, vol. 174(C), pages 31-42.
  226. Wang, Wenwen & Liu, Xiao & Zhang, Ming & Song, Xuefeng, 2014. "Using a new generalized LMDI (logarithmic mean Divisia index) method to analyze China's energy consumption," Energy, Elsevier, vol. 67(C), pages 617-622.
  227. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
  228. Fan, Jing-Li & Liao, Hua & Liang, Qiao-Mei & Tatano, Hirokazu & Liu, Chun-Feng & Wei, Yi-Ming, 2013. "Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis," Applied Energy, Elsevier, vol. 101(C), pages 323-332.
  229. Petrick, Sebastian, 2013. "Carbon efficiency, technology, and the role of innovation patterns: Evidence from German plant-level microdata," Kiel Working Papers 1833, Kiel Institute for the World Economy (IfW Kiel).
  230. Yeongjun Yeo & Dongnyok Shim & Jeong-Dong Lee & Jörn Altmann, 2015. "Driving Forces of CO 2 Emissions in Emerging Countries: LMDI Decomposition Analysis on China and India’s Residential Sector," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
  231. Yamashita, Andre S. & Fujii, Hidemichi, 2022. "Trend and priority change of climate change mitigation technology in the global mining sector," Resources Policy, Elsevier, vol. 78(C).
  232. Wang, Yanqiu & Zhu, Zhiwei & Zhu, Zhaoge & Liu, Zhenbin, 2019. "Analysis of China's energy consumption changing using the Mean Rate of Change Index and the logarithmic mean divisia index," Energy, Elsevier, vol. 167(C), pages 275-282.
  233. Fujii, Hidemichi & Managi, Shunsuke & Kaneko, Shinji, 2019. "Decomposition analysis of air pollution abatement in China: Empirical study for ten industrial sectors from 1998 to 2009," MPRA Paper 92234, University Library of Munich, Germany.
  234. Tan, Xianchun & Dong, Lele & Chen, Dexue & Gu, Baihe & Zeng, Yuan, 2016. "China’s regional CO2 emissions reduction potential: A study of Chongqing city," Applied Energy, Elsevier, vol. 162(C), pages 1345-1354.
  235. Xing Zhou & Meihua Zhou & Ming Zhang, 2016. "Contrastive analyses of the influence factors of interprovincial carbon emission induced by industry energy in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1405-1433, April.
  236. Yang, Lin & Yang, Yuantao & Zhang, Xian & Tang, Kai, 2018. "Whether China's industrial sectors make efforts to reduce CO2 emissions from production? - A decomposed decoupling analysis," Energy, Elsevier, vol. 160(C), pages 796-809.
  237. Hongjun Guan & Zhenzhen Sun & Jingyi Wang, 2022. "Decoupling Analysis of Net Carbon Emissions and Economic Growth of Marine Aquaculture," Sustainability, MDPI, vol. 14(10), pages 1-20, May.
  238. Li, Rongrong & Han, Xinyu & Wang, Qiang, 2023. "Do technical differences lead to a widening gap in China's regional carbon emissions efficiency? Evidence from a combination of LMDI and PDA approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
  239. Muhammad Yousaf Raza & Yingchao Chen & Songlin Tang, 2022. "Assessing the Green R&D Investment and Patent Generation in Pakistan towards CO 2 Emissions Reduction with a Novel Decomposition Framework," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
  240. Lin, Boqiang & Liu, Xia, 2012. "Dilemma between economic development and energy conservation: Energy rebound effect in China," Energy, Elsevier, vol. 45(1), pages 867-873.
  241. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
  242. Zhenyue Liu & Dan Yang & Pengyan Zhang & Ling Jiang & Yanyan Li & Tianqi Rong & Meiling Song, 2022. "Spatial–temporal characteristics and scenario simulation of carbon emissions from energy consumption based on multiscale in the affected areas of the lower Yellow River [The human imperative of sta," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 818-830.
  243. Liu, Zhe & Geng, Yong & Adams, Michelle & Dong, Liang & Sun, Lina & Zhao, Jingjing & Dong, Huijuan & Wu, Jiao & Tian, Xu, 2016. "Uncovering driving forces on greenhouse gas emissions in China’ aluminum industry from the perspective of life cycle analysis," Applied Energy, Elsevier, vol. 166(C), pages 253-263.
  244. Liu, Gengyuan & Hao, Yan & Zhou, Yun & Yang, Zhifeng & Zhang, Yan & Su, Meirong, 2016. "China's low-carbon industrial transformation assessment based on Logarithmic Mean Divisia Index model," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 156-170.
  245. Zbigniew Gołaś, 2022. "Changes in Energy-Related Carbon Dioxide Emissions of the Agricultural Sector in Poland from 2000 to 2019," Energies, MDPI, vol. 15(12), pages 1-18, June.
  246. Yanan Chen & Sheng Lin, 2015. "Decomposition and allocation of energy-related carbon dioxide emission allowance over provinces of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1893-1909, April.
  247. Quan Guo & Zijing Liang & Xiang Bai & Mengnan Lv & Anying Zhang, 2022. "The Analysis of Carbon Emission’s Characteristics and Dynamic Evolution Based on the Strategy of Unbalanced Regional Economic Development in China," Sustainability, MDPI, vol. 14(14), pages 1-31, July.
  248. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
  249. Jain, Princy & Goswami, Binoy, 2021. "Energy efficiency in South Asia: Trends and determinants," Energy, Elsevier, vol. 221(C).
  250. Wood, Richard & Lenzen, Manfred, 2006. "Zero-value problems of the logarithmic mean divisia index decomposition method," Energy Policy, Elsevier, vol. 34(12), pages 1326-1331, August.
  251. Lin Boqiang & Kui Liu, 2017. "Using LMDI to Analyze the Decoupling of Carbon Dioxide Emissions from China’s Heavy Industry," Sustainability, MDPI, vol. 9(7), pages 1-16, July.
  252. Zhang, Xing-Ping & Zhang, Jing & Tan, Qin-Liang, 2013. "Decomposing the change of CO2 emissions: A joint production theoretical approach," Energy Policy, Elsevier, vol. 58(C), pages 329-336.
  253. Changzheng Zhu & Meng Wang & Yarong Yang, 2020. "Analysis of the Influencing Factors of Regional Carbon Emissions in the Chinese Transportation Industry," Energies, MDPI, vol. 13(5), pages 1-20, March.
  254. Xie, Xuan & Shao, Shuai & Lin, Boqiang, 2016. "Exploring the driving forces and mitigation pathways of CO2 emissions in China’s petroleum refining and coking industry: 1995–2031," Applied Energy, Elsevier, vol. 184(C), pages 1004-1015.
  255. Malla, Sunil, 2009. "CO2 emissions from electricity generation in seven Asia-Pacific and North American countries: A decomposition analysis," Energy Policy, Elsevier, vol. 37(1), pages 1-9, January.
  256. Aramendia, Emmanuel & Brockway, Paul E. & Pizzol, Massimo & Heun, Matthew K., 2021. "Moving from final to useful stage in energy-economy analysis: A critical assessment," Applied Energy, Elsevier, vol. 283(C).
  257. Yan, Qingyou & Zhang, Qian & Zou, Xin, 2016. "Decomposition analysis of carbon dioxide emissions in China's regional thermal electricity generation, 2000–2020," Energy, Elsevier, vol. 112(C), pages 788-794.
  258. Cheng, Shulei & Fan, Wei & Chen, Jiandong & Meng, Fanxin & Liu, Gengyuan & Song, Malin & Yang, Zhifeng, 2020. "The impact of fiscal decentralization on CO2 emissions in China," Energy, Elsevier, vol. 192(C).
  259. Rosenkranz, Lydia & Seintsch, Björn & Dieter, Matthias, 2015. "Decomposition analysis of changes in value added. A case study of the sawmilling and wood processing industry in Germany," Forest Policy and Economics, Elsevier, vol. 54(C), pages 36-50.
  260. Wang, Qiang & Li, Rongrong, 2016. "Journey to burning half of global coal: Trajectory and drivers of China׳s coal use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 341-346.
  261. Wachsmann, Ulrike & Wood, Richard & Lenzen, Manfred & Schaeffer, Roberto, 2009. "Structural decomposition of energy use in Brazil from 1970 to 1996," Applied Energy, Elsevier, vol. 86(4), pages 578-587, April.
  262. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
  263. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation," Energy Economics, Elsevier, vol. 64(C), pages 13-23.
  264. Yuanyuan Gong & Deyong Song, 2015. "Life Cycle Building Carbon Emissions Assessment and Driving Factors Decomposition Analysis Based on LMDI—A Case Study of Wuhan City in China," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
  265. Chen, Jiandong & Xu, Chong & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2019. "Driving factors of CO2 emissions and inequality characteristics in China: A combined decomposition approach," Energy Economics, Elsevier, vol. 78(C), pages 589-597.
  266. Cahill, Caiman J. & Ó Gallachóir, Brian P., 2010. "Monitoring energy efficiency trends in European industry: Which top-down method should be used?," Energy Policy, Elsevier, vol. 38(11), pages 6910-6918, November.
  267. Kwon, Tae-Hyeong, 2005. "Decomposition of factors determining the trend of CO2 emissions from car travel in Great Britain (1970-2000)," Ecological Economics, Elsevier, vol. 53(2), pages 261-275, April.
  268. Román, Rocío & Cansino, José M. & Rodas, José A., 2018. "Analysis of the main drivers of CO2 emissions changes in Colombia (1990–2012) and its political implications," Renewable Energy, Elsevier, vol. 116(PA), pages 402-411.
  269. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
  270. Wu, Rui & Geng, Yong & Cui, Xiaowei & Gao, Ziyan & Liu, Zhiqing, 2019. "Reasons for recent stagnancy of carbon emissions in China's industrial sectors," Energy, Elsevier, vol. 172(C), pages 457-466.
  271. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
  272. Minda Ma & Ran Yan & Weiguang Cai, 2017. "A STIRPAT model-based methodology for calculating energy savings in China’s existing civil buildings from 2001 to 2015," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1765-1781, July.
  273. Mikayilov, Jeyhun I. & Darandary, Abdulelah & Alyamani, Ryan & Hasanov, Fakhri J. & Alatawi, Hatem, 2020. "Regional heterogeneous drivers of electricity demand in Saudi Arabia: Modeling regional residential electricity demand," Energy Policy, Elsevier, vol. 146(C).
  274. Takayabu, Hirotaka, 2020. "CO2 mitigation potentials in manufacturing sectors of 26 countries," Energy Economics, Elsevier, vol. 86(C).
  275. Wang, Shaojian & Fang, Chuanglin & Wang, Yang, 2016. "Spatiotemporal variations of energy-related CO2 emissions in China and its influencing factors: An empirical analysis based on provincial panel data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 505-515.
  276. Raza, Muhammad Yousaf & Wu, Rongxin & Lin, Boqiang, 2023. "A decoupling process of Pakistan's agriculture sector: Insights from energy and economic perspectives," Energy, Elsevier, vol. 263(PC).
  277. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
  278. Hidemichi Fujii & Yoshitaka Sakakura & Atsushi Hagiwara & John Bostock & Kiyoshi Soyano & Yoshiki Matsushita, 2017. "Research and Development Strategy for Fishery Technology Innovation for Sustainable Fishery Resource Management in North-East Asia," Sustainability, MDPI, vol. 10(1), pages 1-12, December.
  279. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
  280. Jin-Wei Wang & Hua Liao & Bao-Jun Tang & Ruo-Yu Ke & Yi-Ming Wei, 2017. "Is the CO2 Emissions Reduction from Scale Change, Structural Change or Technology Change? Evidence from Non-metallic Sector of 11 Major Economies in 1995-2009," CEEP-BIT Working Papers 101, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  281. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
  282. Zhaosu Meng & Huan Wang & Baona Wang, 2018. "Empirical Analysis of Carbon Emission Accounting and Influencing Factors of Energy Consumption in China," IJERPH, MDPI, vol. 15(11), pages 1-15, November.
  283. Chen, Qingjuan & Wang, Qunwei & Zhou, Dequn & Wang, Honggang, 2023. "Drivers and evolution of low-carbon development in China's transportation industry: An integrated analytical approach," Energy, Elsevier, vol. 262(PB).
  284. Suyi Kim, 2017. "LMDI Decomposition Analysis of Energy Consumption in the Korean Manufacturing Sector," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
  285. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
  286. Hongjun Lei & Xunfeng Xia & Changjia Li & Beidou Xi, 2012. "Decomposition Analysis of Wastewater Pollutant Discharges in Industrial Sectors of China (2001–2009) Using the LMDI I Method," IJERPH, MDPI, vol. 9(6), pages 1-15, June.
  287. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
  288. Tao Lv & Duyang Pi & Xu Deng & Xiaoran Hou & Jie Xu & Liya Wang, 2022. "Spatiotemporal Evolution and Influencing Factors of Electricity Consumption in the Yangtze River Delta Region," Energies, MDPI, vol. 15(5), pages 1-12, February.
  289. Jiandong Chen & Sishi Rong & Malin Song, 2021. "Poverty Vulnerability and Poverty Causes in Rural China," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 153(1), pages 65-91, January.
  290. Bor, Yunchang Jeffrey, 2008. "Consistent multi-level energy efficiency indicators and their policy implications," Energy Economics, Elsevier, vol. 30(5), pages 2401-2419, September.
  291. Lior Gallo, 2023. "Electricity Intensity Convergence in the OECD Countries," Bank of Israel Working Papers 2023.10, Bank of Israel.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.