IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3884-d1139117.html
   My bibliography  Save this article

Household Carbon Footprint Characteristics and Driving Factors: A Global Comparison Based on a Dynamic Input–Output Model

Author

Listed:
  • Xi Chen

    (School of Applied Economics, Renmin University of China, Beijing 100872, China)

  • Yingying Zhen

    (School of Applied Economics, Renmin University of China, Beijing 100872, China)

  • Zhanming Chen

    (School of Applied Economics, Renmin University of China, Beijing 100872, China)

Abstract

Carbon emissions are rapidly increasing with continuing global economic development, necessitating an urgent energy revolution. Often, when calculating carbon footprint, analysts have failed to account for changes in capital stock and the impact of indirect emissions caused by the consumption of imported products. Furthermore, the homogenization of industrial and resident sectors has reduced our understanding of the specific driving forces behind carbon emissions. To avoid such locational and temporal biases, this study employs a dynamic input–output model to re-estimate the carbon footprint of only residents. We deconstruct residential emissions into different consumption categories and conduct a comparative analysis between developed and developing countries from across the world. To this end, data from 44 global economies were obtained from the World Input–Output Database for the period from 2000 to 2014. For developing countries, food consumption had the highest share of embodied carbon emissions, maintaining a share of over 20%, whereas in developed countries, housing consumption had the highest share, remaining at over 30%. In most countries, the consumption level and emission intensity effects were the most important drivers of carbon emission increases and carbon emission decreases, respectively. However, the contributions of the two varied considerably in different countries, with the maximum impact of the emission intensity effect on the carbon footprint of a single category reaching 854.31% in the US and 99.34% in China. These findings will help countries tailor their emission reduction policies to local conditions and emphasize that emission reductions should start by reducing the emission intensity and consumption structure of the corresponding sectors.

Suggested Citation

  • Xi Chen & Yingying Zhen & Zhanming Chen, 2023. "Household Carbon Footprint Characteristics and Driving Factors: A Global Comparison Based on a Dynamic Input–Output Model," Energies, MDPI, vol. 16(9), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3884-:d:1139117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3884/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3884/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Yang & Li, Feng, 2017. "Examining the effects of urbanization and industrialization on carbon dioxide emission: Evidence from China's provincial regions," Energy, Elsevier, vol. 125(C), pages 533-542.
    2. Wenxiu Wang & Yaoqiu Kuang & Ningsheng Huang, 2011. "Study on the Decomposition of Factors Affecting Energy-Related Carbon Emissions in Guangdong Province, China," Energies, MDPI, vol. 4(12), pages 1-24, December.
    3. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    4. Wang, Bo & Sun, Yefei & Chen, Qingxiang & Wang, Zhaohua, 2018. "Determinants analysis of carbon dioxide emissions in passenger and freight transportation sectors in China," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 127-132.
    5. Druckman, Angela & Jackson, Tim, 2009. "The carbon footprint of UK households 1990-2004: A socio-economically disaggregated, quasi-multi-regional input-output model," Ecological Economics, Elsevier, vol. 68(7), pages 2066-2077, May.
    6. Ang, B.W & Zhang, F.Q & Choi, Ki-Hong, 1998. "Factorizing changes in energy and environmental indicators through decomposition," Energy, Elsevier, vol. 23(6), pages 489-495.
    7. Thomas Wiedmann & Richard Wood & Jan Minx & Manfred Lenzen & Dabo Guan & Rocky Harris, 2010. "A Carbon Footprint Time Series Of The Uk - Results From A Multi-Region Input-Output Model," Economic Systems Research, Taylor & Francis Journals, vol. 22(1), pages 19-42.
    8. Wei, Yi-Ming & Liu, Lan-Cui & Fan, Ying & Wu, Gang, 2007. "The impact of lifestyle on energy use and CO2 emission: An empirical analysis of China's residents," Energy Policy, Elsevier, vol. 35(1), pages 247-257, January.
    9. Araújo, Inácio Fernandes de & Jackson, Randall W. & Ferreira Neto, Amir B. & Perobelli, Fernando S., 2020. "European union membership and CO2 emissions: A structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 190-203.
    10. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    11. Ding, Qun & Cai, Wenjia & Wang, Can & Sanwal, Mukul, 2017. "The relationships between household consumption activities and energy consumption in china— An input-output analysis from the lifestyle perspective," Applied Energy, Elsevier, vol. 207(C), pages 520-532.
    12. Rocco, Matteo V. & Golinucci, Nicolò & Ronco, Stefano M. & Colombo, Emanuela, 2020. "Fighting carbon leakage through consumption-based carbon emissions policies: Empirical analysis based on the World Trade Model with Bilateral Trades," Applied Energy, Elsevier, vol. 274(C).
    13. Xie, Rui & Wang, Fangfang & Chevallier, Julien & Zhu, Bangzhu & Zhao, Guomei, 2018. "Supply-side structural effects of air pollutant emissions in China: A comparative analysis," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 89-95.
    14. Bin, Shui & Dowlatabadi, Hadi, 2005. "Corrigendum to "Consumer lifestyles approach to US energy use and the related CO2 emissions": [Energy Policy 33 (2005) 197-208]," Energy Policy, Elsevier, vol. 33(10), pages 1362-1363, July.
    15. Stefan Pauliuk & Richard Wood & Edgar G. Hertwich, 2015. "Dynamic Models of Fixed Capital Stocks and Their Application in Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 19(1), pages 104-116, February.
    16. Zhaohua Wang & Wei Liu & Jianhua Yin, 2015. "Driving forces of indirect carbon emissions from household consumption in China: an input–output decomposition analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 257-272, February.
    17. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2017. "Household carbon footprints in the Baltic States: A global multi-regional input–output analysis from 1995 to 2011," Applied Energy, Elsevier, vol. 189(C), pages 780-788.
    18. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    19. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    20. Bin, Shui & Dowlatabadi, Hadi, 2005. "Consumer lifestyle approach to US energy use and the related CO2 emissions," Energy Policy, Elsevier, vol. 33(2), pages 197-208, January.
    21. Machado, Giovani & Schaeffer, Roberto & Worrell, Ernst, 2001. "Energy and carbon embodied in the international trade of Brazil: an input-output approach," Ecological Economics, Elsevier, vol. 39(3), pages 409-424, December.
    22. Kulionis, Viktoras & Wood, Richard, 2020. "Explaining decoupling in high income countries: A structural decomposition analysis of the change in energy footprint from 1970 to 2009," Energy, Elsevier, vol. 194(C).
    23. Amat Adarov & Robert Stehrer, 2019. "Tangible and Intangible Assets in the Growth Performance of the EU, Japan and the US," wiiw Research Reports 442, The Vienna Institute for International Economic Studies, wiiw.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Junjie & Yu, Biying & Wei, Yi-Ming, 2018. "Heterogeneous impacts of households on carbon dioxide emissions in Chinese provinces," Applied Energy, Elsevier, vol. 229(C), pages 236-252.
    2. Rui Huang & Shaohui Zhang & Changxin Liu, 2018. "Comparing Urban and Rural Household CO 2 Emissions—Case from China’s Four Megacities: Beijing, Tianjin, Shanghai, and Chongqing," Energies, MDPI, vol. 11(5), pages 1-17, May.
    3. Li, Jun & Zhang, Dayong & Su, Bin, 2019. "The Impact of Social Awareness and Lifestyles on Household Carbon Emissions in China," Ecological Economics, Elsevier, vol. 160(C), pages 145-155.
    4. Xinkuo Xu & Liyan Han, 2017. "Diverse Effects of Consumer Credit on Household Carbon Emissions at Quantiles: Evidence from Urban China," Sustainability, MDPI, vol. 9(9), pages 1-25, September.
    5. Yueyue Rong & Junsong Jia & Min Ju & Chundi Chen & Yangming Zhou & Yexi Zhong, 2021. "Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and σ Convergence in Central China," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    6. Yuling Sun & Junsong Jia & Min Ju & Chundi Chen, 2022. "Spatiotemporal Dynamics of Direct Carbon Emission and Policy Implication of Energy Transition for China’s Residential Consumption Sector by the Methods of Social Network Analysis and Geographically We," Land, MDPI, vol. 11(7), pages 1-26, July.
    7. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    8. Golley, Jane & Meng, Xin, 2012. "Income inequality and carbon dioxide emissions: The case of Chinese urban households," Energy Economics, Elsevier, vol. 34(6), pages 1864-1872.
    9. Zhu, Qin & Peng, Xizhe & Wu, Kaiya, 2012. "Calculation and decomposition of indirect carbon emissions from residential consumption in China based on the input–output model," Energy Policy, Elsevier, vol. 48(C), pages 618-626.
    10. Yong Wang & Guangchun Yang & Ying Dong & Yu Cheng & Peipei Shang, 2018. "The Scale, Structure and Influencing Factors of Total Carbon Emissions from Households in 30 Provinces of China—Based on the Extended STIRPAT Model," Energies, MDPI, vol. 11(5), pages 1-25, May.
    11. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    12. Ding, Qun & Cai, Wenjia & Wang, Can & Sanwal, Mukul, 2017. "The relationships between household consumption activities and energy consumption in china— An input-output analysis from the lifestyle perspective," Applied Energy, Elsevier, vol. 207(C), pages 520-532.
    13. Wei, Rui & Zhang, Wencheng & Peng, Shuijun, 2022. "Energy and greenhouse gas footprints of China households during 1995–2019: A global perspective," Energy Policy, Elsevier, vol. 164(C).
    14. Yong Yang & Junsong Jia & Adam T. Devlin & Yangming Zhou & Dongming Xie & Min Ju, 2020. "Decoupling and Decomposition Analysis of Residential Energy Consumption from Economic Growth during 2000–2017: A Comparative Study of Urban and Rural Guangdong, China," Energies, MDPI, vol. 13(17), pages 1-21, August.
    15. Jingjing Chen & Yangyang Lin & Xiaojun Wang & Bingjing Mao & Lihong Peng, 2022. "Direct and Indirect Carbon Emission from Household Consumption Based on LMDI and SDA Model: A Decomposition and Comparison Analysis," Energies, MDPI, vol. 15(14), pages 1-22, July.
    16. Hongwu Zhang & Lequan Zhang & Keying Wang & Xunpeng Shi, 2019. "Unveiling Key Drivers of Indirect Carbon Emissions of Chinese Older Households," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    17. Donglan, Zha & Dequn, Zhou & Peng, Zhou, 2010. "Driving forces of residential CO2 emissions in urban and rural China: An index decomposition analysis," Energy Policy, Elsevier, vol. 38(7), pages 3377-3383, July.
    18. Sanna Ala-Mantila & Jukka Heinonen & Seppo Junnila, 2013. "Greenhouse Gas Implications of Urban Sprawl in the Helsinki Metropolitan Area," Sustainability, MDPI, vol. 5(10), pages 1-18, October.
    19. Tao Lin & Yunjun Yu & Xuemei Bai & Ling Feng & Jin Wang, 2013. "Greenhouse Gas Emissions Accounting of Urban Residential Consumption: A Household Survey Based Approach," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-12, February.
    20. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3884-:d:1139117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.