IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i18p8113-d1745645.html
   My bibliography  Save this article

Spatial–Temporal Decoupling of Urban Carbon Emissions and Socioeconomic Development in the Yangtze River Economic Belt

Author

Listed:
  • Kerong Zhang

    (School of Business, Fuyang Normal University, Fuyang 236037, China)

  • Dongyang Li

    (School of Business, Fuyang Normal University, Fuyang 236037, China)

  • Xiaolong Ji

    (School of Business, Fuyang Normal University, Fuyang 236037, China)

  • Ying Zhang

    (School of Business, Fuyang Normal University, Fuyang 236037, China)

  • Yuxin Wang

    (School of Business, Fuyang Normal University, Fuyang 236037, China)

  • Wuyi Liu

    (School of Biological Science and Food Engineering, Fuyang Normal University, Fuyang 236037, China)

Abstract

The spatial–temporal pattern, influencing factors and driving variables of carbon emissions are essential considerations for achieving China’s carbon peak and neutrality targets, which support high-quality development. This study was designed to explore and evaluate the spatial–temporal evolutionary characteristics, trends and main influencing factors of carbon emissions in the Yangtze River Economic Belt (YREB), focusing on the decoupling of carbon emissions and socioeconomic development in the YREB. In total, 11 provinces and key cities were focused on as the research objects of the YREB district Tapio decoupling model, which examined the decoupling relationship between carbon emissions and socioeconomic development. Combined with a geographic detector, the Tapio, Logarithmic Mean Divisia Index (LMDI) and gray prediction models were employed in a comprehensive evaluating pipeline, which was constructed to decouple the main influencing factors and corresponding impacts of carbon emissions. Particularly, the gray prediction model was employed to predict the carbon emission differences in the YREB sub-regions in 2030. The results indicated the following: (1) The total carbon emissions showed a periodic fluctuation and upward trend with obvious spatial differences, and energy consumption was mainly dominated by coal. (2) The center of carbon emissions was located in Hubei Province in the middle reaches of the Yangtze River, with a standard deviation ellipse showing a “Southwest–Northeast” trend, and most provinces were concentrated in the L-H (low-high) cluster. (3) The entire YREB had achieved carbon emissions decoupling, but it was mainly in a weak decoupling state. (4) Carbon emissions were significantly affected by the indicator E for economic growth, with the indicators EI for energy consumption and I for the added ratio of GDP also bringing greater impacts on carbon reduction contributions. The carbon emission prediction results indicated that the upper and middle reaches of the YREB were more likely to achieve carbon neutrality.

Suggested Citation

  • Kerong Zhang & Dongyang Li & Xiaolong Ji & Ying Zhang & Yuxin Wang & Wuyi Liu, 2025. "Spatial–Temporal Decoupling of Urban Carbon Emissions and Socioeconomic Development in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 17(18), pages 1-32, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8113-:d:1745645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/18/8113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/18/8113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ang, B.W & Zhang, F.Q & Choi, Ki-Hong, 1998. "Factorizing changes in energy and environmental indicators through decomposition," Energy, Elsevier, vol. 23(6), pages 489-495.
    2. Luhao Jia & Mingya Wang & Shili Yang & Fan Zhang & Yidong Wang & Penghao Li & Wanqi Ma & Shaobo Sui & Tong Liu & Mingshi Wang, 2024. "Analysis of Agricultural Carbon Emissions and Carbon Sinks in the Yellow River Basin Based on LMDI and Tapio Decoupling Models," Sustainability, MDPI, vol. 16(1), pages 1-26, January.
    3. Wang, Jieyu & Shan, Yuli & Cui, Can & Zhao, Congyu & Meng, Jing & Wang, Shaojian, 2024. "Investigating the fast energy-related carbon emissions growth in African countries and its drivers," Applied Energy, Elsevier, vol. 357(C).
    4. Wang, Longke & Zhang, Ming & Song, Yan, 2024. "Research on the spatiotemporal evolution characteristics and driving factors of the spatial connection network of carbon emissions in China: New evidence from 260 cities," Energy, Elsevier, vol. 291(C).
    5. Chen, Changhua & Luo, Yuqing & Zou, Hong & Huang, Junbing, 2023. "Understanding the driving factors and finding the pathway to mitigating carbon emissions in China's Yangtze River Delta region," Energy, Elsevier, vol. 278(PB).
    6. Liang, Junyi & Wang, Shaojian & Liao, Yuantao & Feng, Kuishuang, 2024. "Carbon emissions embodied in investment: Assessing emissions reduction responsibility through multi-regional input-output analysis," Applied Energy, Elsevier, vol. 358(C).
    7. Kai Dong & Shaonan Wang & Hengqiang Hu & Ningning Guan & Xiaolei Shi & Ye Song, 2024. "Financial development, carbon dioxide emissions, and sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(1), pages 348-366, February.
    8. Le Jing & Bin Zhou & Zhenliang Liao, 2024. "Decoupling Analysis of Economic Growth and Carbon Emissions in Xinjiang Based on Tapio and Logarithmic Mean Divisia Index Models," Sustainability, MDPI, vol. 16(18), pages 1-17, September.
    9. Mengru Song & Yanjun Wang & Cheng Wang & Walter Musakwa & Yiye Ji, 2024. "Spatial and Temporal Characteristics of Carbon Emissions from Construction Industry in China from 2010 to 2019," Sustainability, MDPI, vol. 16(14), pages 1-25, July.
    10. Xinjie Jiang & Fengjun Xie, 2024. "Decomposition Analysis of Carbon Emission Drivers and Peaking Pathways for Key Sectors under China’s Dual Carbon Goals: A Case Study of Jiangxi Province, China," Sustainability, MDPI, vol. 16(13), pages 1-23, July.
    11. Yu, Haijing & Shen, Shaowei & Han, Lei & Ouyang, Jian, 2024. "Spatiotemporal heterogeneities in the impact of the digital economy on carbon emission transfers in China," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    12. Qiguang An & Lin Zheng & Mu Yang, 2024. "Spatiotemporal Heterogeneities in the Impact of Chinese Digital Economy Development on Carbon Emissions," Sustainability, MDPI, vol. 16(7), pages 1-19, March.
    13. Zhaoliang Ma & Zhengdong Fei, 2024. "Research on the Mechanism of the Carbon Emission Reduction Effect of Green Finance," Sustainability, MDPI, vol. 16(7), pages 1-15, April.
    14. Fuyu Zhang & Qiang Wang & Rongrong Li, 2025. "Industrial Robots and Urban Carbon Emissions: Exploring Mechanisms and Implications," Sustainable Development, John Wiley & Sons, Ltd., vol. 33(4), pages 5351-5373, August.
    15. Huang Zhang & Yidong Lei, 2023. "Study on Spatial and Temporal Characteristics and Influencing Factors of Carbon Emissions in the Urban Agglomeration of the Middle Reaches of the Yangtze River," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Xiang-Yan & Yu, Yan-Yan & Yan, Song-Yang & Jiang, Hong-Dian, 2025. "Environmental and economy-wide impacts of green fiscal policies on digital economy development: A CGE-based analysis," Economic Analysis and Policy, Elsevier, vol. 86(C), pages 65-75.
    2. Li, Zihao & Bai, Tingting & Qian, Jingwen & Wu, Haitao, 2024. "The digital revolution's environmental paradox: Exploring the synergistic effects of pollution and carbon reduction via industrial metamorphosis and displacement," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
    3. Wang, Lei & Ramsey, Thomas Stephen, 2024. "Digital divide and environmental pressure: A countermeasure on the embodied carbon emissions in FDI," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    4. Cai, Angzu & Wang, Leyi & Zhang, Yuhao & Wu, Haoran & Zhang, Huai & Guo, Ru & Wu, Jiang, 2025. "Uncovering the multiple socio-economic driving factors of carbon emissions in nine urban agglomerations of China based on machine learning," Energy, Elsevier, vol. 319(C).
    5. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    6. Hongyang Qiao & Sanmang Wu, 2025. "Decoupling Factor Analysis for Sustainable Development in China’s Four Municipalities Using the Tapio Model," Sustainability, MDPI, vol. 17(6), pages 1-26, March.
    7. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.
    8. Ronald E. Miller & Umed Temurshoev, 2017. "Output Upstreamness and Input Downstreamness of Industries/Countries in World Production," International Regional Science Review, , vol. 40(5), pages 443-475, September.
    9. Li, Aijun & Hu, Mingming & Wang, Mingjian & Cao, Yinxue, 2016. "Energy consumption and CO2 emissions in Eastern and Central China: A temporal and a cross-regional decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 284-297.
    10. GUPTA Monika, 2019. "Decomposing The Role Of Different Factors In Co2 Emissions Increase In South Asia," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(1), pages 72-86, April.
    11. Zhou, Xiaoyan & Zhang, Jie & Li, Junpeng, 2013. "Industrial structural transformation and carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 57(C), pages 43-51.
    12. Chen, Yufeng & Miao, Jiafeng, 2023. "What Determines China’s Agricultural Non-Point Source Pollution? An Improved LMDI Decomposition Analysis," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 48(2), May.
    13. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    14. Rivera-Niquepa, Juan David & De Oliveira-De Jesus, Paulo M. & Yusta, Jose M., 2025. "Trend-based multi-period decomposition and decoupling methodology for energy-related carbon dioxide emissions: A case study of Portugal," Utilities Policy, Elsevier, vol. 93(C).
    15. Jiandong Chen & Ping Wang & Jixian Zhou & Malin Song & Xinyue Zhang, 2022. "Influencing factors and efficiency of funds in humanitarian supply chains: the case of Chinese rural minimum living security funds," Annals of Operations Research, Springer, vol. 319(1), pages 413-438, December.
    16. Yang, Jing & Song, Kaihui & Hou, Jian & Zhang, Peidong & Wu, Jinhu, 2017. "Temporal and spacial dynamics of bioenergy-related CO2 emissions and underlying forces analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1323-1330.
    17. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    18. Ana Cano-Ortiz & Juan Peña-Martínez & Eusebio Cano, 2025. "Environmental Education as a Fundamental Tool for Preventing the Ingestion of Chemical Contaminants in Spain," Sustainability, MDPI, vol. 17(9), pages 1-17, April.
    19. Md. Alamgir Hossain & Fazlur Rashid & Md. Shamim Akhter & Muhammad Aziz & Md. Emdadul Hoque, 2024. "Liquid Fuel Generation from Onion Shell: An Experimental Approach of Pyrolysis Process," Energies, MDPI, vol. 17(9), pages 1-15, May.
    20. Changfeng Shi & Hang Yuan & Qinghua Pang & Yangyang Zhang, 2020. "Research on the Decoupling of Water Resources Utilization and Agricultural Economic Development in Gansu Province from the Perspective of Water Footprint," IJERPH, MDPI, vol. 17(16), pages 1-16, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8113-:d:1745645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.