IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i7p2118-d153645.html
   My bibliography  Save this article

The Relationship between Tourism, Carbon Dioxide Emissions, and Economic Growth in the Yangtze River Delta, China

Author

Listed:
  • Lingling Chen

    (Department of Tourism Management, Jinling Institute of Technology, Nanjing 210038, China)

  • Brijesh Thapa

    (Department of Tourism, Recreation & Sport Management, University of Florida, Gainesville, FL 32611-8208, USA)

  • Wei Yan

    (Department of Tourism Management, Jinling Institute of Technology, Nanjing 210038, China)

Abstract

Quantifying the dynamics of regional tourism in a low-carbon economy context is a pivotal issue to develop energy policies, and to decompose the national carbon abatement. Based on a case study approach for the Yangtze River Delta (YRD), China, the relationship between tourism, carbon dioxide (CO 2 ) emissions, and economic growth were examined. The bottom-up approach, decoupling analysis, and Logarithmic Mean Divisia Index (LMDI) decomposition were integrated and applied. The results from 2001 to 2015 indicated that tourism-induced energy consumption and CO 2 emissions in YRD increased from 896.90 × 10 8 MJ to 3207.40 × 10 8 MJ, and 673.55 × 10 4 t to 2152.27 × 10 4 t, respectively. Tourism-related transport from Shanghai was the major contributor towards emissions. The decoupling relation between CO 2 emissions and economic growth, in general, were desirable in YRD’s tourism, except in 2004. However, the situation in Shanghai was complicated. Additionally, industry size and expenditure size effect were principal factors to promote carbon emissions growth, whereas energy intensity, spatial structure, and sectorial structure had negative effects. Key issues for policymakers have been highlighted and discussed.

Suggested Citation

  • Lingling Chen & Brijesh Thapa & Wei Yan, 2018. "The Relationship between Tourism, Carbon Dioxide Emissions, and Economic Growth in the Yangtze River Delta, China," Sustainability, MDPI, Open Access Journal, vol. 10(7), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2118-:d:153645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/7/2118/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/7/2118/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Climent, Francisco & Pardo, Angel, 2007. "Decoupling factors on the energy-output linkage: The Spanish case," Energy Policy, Elsevier, vol. 35(1), pages 522-528, January.
    3. Ang, B.W & Zhang, F.Q & Choi, Ki-Hong, 1998. "Factorizing changes in energy and environmental indicators through decomposition," Energy, Elsevier, vol. 23(6), pages 489-495.
    4. Albrecht, Johan & Francois, Delphine & Schoors, Koen, 2002. "A Shapley decomposition of carbon emissions without residuals," Energy Policy, Elsevier, vol. 30(9), pages 727-736, July.
    5. Ang, B. W. & Liu, F. L. & Chew, E. P., 2003. "Perfect decomposition techniques in energy and environmental analysis," Energy Policy, Elsevier, vol. 31(14), pages 1561-1566, November.
    6. Reza Sherafatian-Jahromi & Mohd Shahwahid Othman & Siong Hook Law & Normaz Wana Ismail, 2017. "Tourism and CO2 emissions nexus in Southeast Asia: new evidence from panel estimation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1407-1423, August.
    7. Shi, Yan & Du, Yuanyuan & Yang, Guofu & Tang, Yuli & Fan, Likun & Zhang, Jun & Lu, Yijun & Ge, Ying & Chang, Jie, 2013. "The use of green waste from tourist attractions for renewable energy production: The potential and policy implications," Energy Policy, Elsevier, vol. 62(C), pages 410-418.
    8. Gossling, Stefan & Hansson, Carina Borgstrom & Horstmeier, Oliver & Saggel, Stefan, 2002. "Ecological footprint analysis as a tool to assess tourism sustainability," Ecological Economics, Elsevier, vol. 43(2-3), pages 199-211, December.
    9. Becken, Susanne & Frampton, Chris & Simmons, David, 2001. "Energy consumption patterns in the accommodation sector--the New Zealand case," Ecological Economics, Elsevier, vol. 39(3), pages 371-386, December.
    10. Hannah Sharp & Josefine Grundius & Jukka Heinonen, 2016. "Carbon Footprint of Inbound Tourism to Iceland: A Consumption-Based Life-Cycle Assessment including Direct and Indirect Emissions," Sustainability, MDPI, Open Access Journal, vol. 8(11), pages 1-23, November.
    11. Liu, Jun & Feng, Tingting & Yang, Xi, 2011. "The energy requirements and carbon dioxide emissions of tourism industry of Western China: A case of Chengdu city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2887-2894, August.
    12. Xiangsheng Dou & Huanying Cui, 2017. "Low-carbon society creation and socio-economic structural transition in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(5), pages 1577-1599, October.
    13. Katircioglu, Salih Turan & Feridun, Mete & Kilinc, Ceyhun, 2014. "Estimating tourism-induced energy consumption and CO2 emissions: The case of Cyprus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 634-640.
    14. Zhang, Jiekuan & Zhang, Yan, 2018. "Carbon tax, tourism CO2 emissions and economic welfare," Annals of Tourism Research, Elsevier, vol. 69(C), pages 18-30.
    15. Carlsson-Kanyama, Annika & Linden, Anna-Lisa, 1999. "Travel patterns and environmental effects now and in the future:: implications of differences in energy consumption among socio-economic groups," Ecological Economics, Elsevier, vol. 30(3), pages 405-417, September.
    16. Chia-Wei Hsu & Tsai-Chi Kuo & Guey-Shin Shyu & Pi-Shen Chen, 2014. "Low Carbon Supplier Selection in the Hotel Industry," Sustainability, MDPI, Open Access Journal, vol. 6(5), pages 1-27, May.
    17. Luo, Fen & Becken, Susanne & Zhong, Yongde, 2018. "Changing travel patterns in China and ‘carbon footprint’ implications for a domestic tourist destination," Tourism Management, Elsevier, vol. 65(C), pages 1-13.
    18. Peeters, Paul & Dubois, Ghislain, 2010. "Tourism travel under climate change mitigation constraints," Journal of Transport Geography, Elsevier, vol. 18(3), pages 447-457.
    19. Tang, Chengcai & Zhong, Linsheng & Ng, Pin, 2017. "Factors that Influence the Tourism Industry's Carbon Emissions: a Tourism Area Life Cycle Model Perspective," Energy Policy, Elsevier, vol. 109(C), pages 704-718.
    20. Carlo Aall, 2014. "Sustainable Tourism in Practice: Promoting or Perverting the Quest for a Sustainable Development?," Sustainability, MDPI, Open Access Journal, vol. 6(5), pages 1-22, April.
    21. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.
    22. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    23. Sun, Ya-Yen, 2016. "Decomposition of tourism greenhouse gas emissions: Revealing the dynamics between tourism economic growth, technological efficiency, and carbon emissions," Tourism Management, Elsevier, vol. 55(C), pages 326-336.
    24. Jiang, Bing & Sun, Zhenqing & Liu, Meiqin, 2010. "China's energy development strategy under the low-carbon economy," Energy, Elsevier, vol. 35(11), pages 4257-4264.
    25. Luken, Ralph A. & Piras, Stefano, 2011. "A critical overview of industrial energy decoupling programs in six developing countries in Asia," Energy Policy, Elsevier, vol. 39(6), pages 3869-3872, June.
    26. Smith, Inga J. & Rodger, Craig J., 2009. "Carbon emission offsets for aviation-generated emissions due to international travel to and from New Zealand," Energy Policy, Elsevier, vol. 37(9), pages 3438-3447, September.
    27. Ye, Bin & Jiang, JingJing & Li, Changsheng & Miao, Lixin & Tang, Jie, 2017. "Quantification and driving force analysis of provincial-level carbon emissions in China," Applied Energy, Elsevier, vol. 198(C), pages 223-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiyang Sun & Guolin Hou & Zhenfang Huang & Yi Zhong, 2020. "Spatial-Temporal Differences and Influencing Factors of Tourism Eco-Efficiency in China’s Three Major Urban Agglomerations Based on the Super-EBM Model," Sustainability, MDPI, Open Access Journal, vol. 12(10), pages 1-21, May.
    2. Rafał Nagaj & Brigita Žuromskaitė, 2021. "Tourism in the Era of Covid-19 and Its Impact on the Environment," Energies, MDPI, Open Access Journal, vol. 14(7), pages 1-18, April.
    3. Muhammad Khalid Anser & Zahid Yousaf & Usama Awan & Abdelmohsen A. Nassani & Muhammad Moinuddin Qazi Abro & Khalid Zaman, 2020. "Identifying the Carbon Emissions Damage to International Tourism: Turn a Blind Eye," Sustainability, MDPI, Open Access Journal, vol. 12(5), pages 1-20, March.
    4. Asif Khan & Sughra Bibi & Lorenzo Ardito & Jiaying Lyu & Hizar Hayat & Anas Mahmud Arif, 2020. "Revisiting the Dynamics of Tourism, Economic Growth, and Environmental Pollutants in the Emerging Economies—Sustainable Tourism Policy Implications," Sustainability, MDPI, Open Access Journal, vol. 12(6), pages 1-23, March.
    5. Vyddiyaratnam Pathmanandakumar & Sheeba Nettukandy Chenoli & Hong Ching Goh, 2021. "Linkages between Climate Change and Coastal Tourism: A Bibliometric Analysis," Sustainability, MDPI, Open Access Journal, vol. 13(19), pages 1-21, September.
    6. Sharif, Arshian & Saha, Shrabani & Campbell, Neil & Sinha, Avik & Ibrahiem, Dalia M., 2020. "Tourism, Environment and Energy: An Analysis for China," MPRA Paper 99985, University Library of Munich, Germany.
    7. Sharif, Arshian & Iqbal Godil, Danish & Xu, Bingjie & Sinha, Avik & Abdul Rehman Khan, Syed & Jermsittiparsert, Kittisak, 2020. "Revisiting the Role of Tourism and Globalization in Environmental Degradation in China: Fresh Insights from the Quantile ARDL Approach," MPRA Paper 101156, University Library of Munich, Germany, revised 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengcai Tang & Ziwei Wan & Pin Ng & Xiangyi Dai & Qiuxiang Sheng & Da Chen, 2019. "Temporal and Spatial Evolution of Carbon Emissions and Their Influencing Factors for Tourist Attractions at Heritage Tourist Destinations," Sustainability, MDPI, Open Access Journal, vol. 11(21), pages 1-19, October.
    2. Kai Wang & Chang Gan & Yan Ou & Haolong Liu, 2019. "Low-Carbon Behaviour Performance of Scenic Spots in a World Heritage Site," Sustainability, MDPI, Open Access Journal, vol. 11(13), pages 1-23, July.
    3. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    4. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    5. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    6. Zha, Jianping & He, Lamei & Liu, Yang & Shao, Yuhong, 2019. "Evaluation on development efficiency of low-carbon tourism economy: A case study of Hubei Province, China," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 47-57.
    7. Rui Wang & Bing Xia & Suocheng Dong & Yu Li & Zehong Li & Duoxun Ba & Wenbiao Zhang, 2020. "Research on the Spatial Differentiation and Driving Forces of Eco-Efficiency of Regional Tourism in China," Sustainability, MDPI, Open Access Journal, vol. 13(1), pages 1-23, December.
    8. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposing the decoupling of CO2 emissions and economic growth in Brazil," Ecological Economics, Elsevier, vol. 70(8), pages 1459-1469, June.
    9. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
    10. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'Economique de l'École de gestion à l'Université de Sherbrooke.
    11. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    12. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    13. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    14. Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
    15. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    16. repec:gam:jsusta:v:7:y:2015:i:12:p:16108-16129:d:59949 is not listed on IDEAS
    17. Yeongjun Yeo & Dongnyok Shim & Jeong-Dong Lee & Jörn Altmann, 2015. "Driving Forces of CO 2 Emissions in Emerging Countries: LMDI Decomposition Analysis on China and India’s Residential Sector," Sustainability, MDPI, Open Access Journal, vol. 7(12), pages 1-22, December.
    18. Román-Collado, Rocío & Morales-Carrión, Any Viviana, 2018. "Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO2 emissions changes," Energy Policy, Elsevier, vol. 115(C), pages 273-280.
    19. Cahill, Caiman J. & Ó Gallachóir, Brian P., 2010. "Monitoring energy efficiency trends in European industry: Which top-down method should be used?," Energy Policy, Elsevier, vol. 38(11), pages 6910-6918, November.
    20. Leal, Patrícia Alexandra & Marques, António Cardoso & Fuinhas, José Alberto, 2019. "Decoupling economic growth from GHG emissions: Decomposition analysis by sectoral factors for Australia," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 12-26.
    21. Ang, B.W. & Huang, H.C. & Mu, A.R., 2009. "Properties and linkages of some index decomposition analysis methods," Energy Policy, Elsevier, vol. 37(11), pages 4624-4632, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2118-:d:153645. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: XML Conversion Team (email available below). General contact details of provider: https://www.mdpi.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.