IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v54y2015icp36-50.html
   My bibliography  Save this article

Decomposition analysis of changes in value added. A case study of the sawmilling and wood processing industry in Germany

Author

Listed:
  • Rosenkranz, Lydia
  • Seintsch, Björn
  • Dieter, Matthias

Abstract

It is basically assumed that a higher level of domestic wood harvesting leads to a higher level of domestic wood use and thus to an increase of value added in the wood processing industry. However, in the past years, the wood input increased in some wood processing sectors in Germany whereas their value added decreased. Against this background we aimed to decompose changes in input and output in order to isolate the effects of value added and to determine the role of wood as intermediate input of the sawmilling and wood processing industries. We regarded the years 2006 compared to 2002 and 2010 compared to 2006. Based on statistical data, a decomposition method was developed that determines changes in the product price, the intermediate input price, the growth and the structural effect. Furthermore, a special focus was set on the impacts of price and quantity changes of the input of wood-based products. We found out, that the growth effect is connected to the wood input in the sawmilling industry in the considered years. Also, it became apparent that a higher input of wood and wood products does not automatically lead to an increase in value added.

Suggested Citation

  • Rosenkranz, Lydia & Seintsch, Björn & Dieter, Matthias, 2015. "Decomposition analysis of changes in value added. A case study of the sawmilling and wood processing industry in Germany," Forest Policy and Economics, Elsevier, vol. 54(C), pages 36-50.
  • Handle: RePEc:eee:forpol:v:54:y:2015:i:c:p:36-50
    DOI: 10.1016/j.forpol.2015.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1389934115000052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.forpol.2015.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hans-Werner Sinn, 2005. "Bazaar Economy GermanyWorld Champion Exporter or Laggard?," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 58(06), pages 03-42, March.
    2. Ang, B.W & Zhang, F.Q & Choi, Ki-Hong, 1998. "Factorizing changes in energy and environmental indicators through decomposition," Energy, Elsevier, vol. 23(6), pages 489-495.
    3. Ang, B.W., 1995. "Decomposition methodology in industrial energy demand analysis," Energy, Elsevier, vol. 20(11), pages 1081-1095.
    4. Seintsch, Björn, 2013. "Cluster Forst und Holz nach neuer Wirtschaftszweigklassifikation: Tabellen für das Bundesgebiet und die Länder 2000 bis 2011," Thünen Working Papers 5, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries.
    5. Stanislav Ivanov & Craig Webster, 2010. "Decomposition of economic growth in Bulgaria by industry," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 37(2), pages 219-227, May.
    6. Sun, J.W & Ang, B.W, 2000. "Some properties of an exact energy decomposition model," Energy, Elsevier, vol. 25(12), pages 1177-1188.
    7. Seintsch, Björn & Weimar, Holger, 2013. "Holzbilanzen 2010 bis 2012 für die Bundesrepublik Deutschland," Thünen Working Papers 9, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries.
    8. Milana, Carlo, 1988. "Constant-market-shares analysis and index number theory," European Journal of Political Economy, Elsevier, vol. 4(4), pages 453-478.
    9. C. O’Donnell, 2012. "An aggregate quantity framework for measuring and decomposing productivity change," Journal of Productivity Analysis, Springer, vol. 38(3), pages 255-272, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li-Ting Yeh, 2017. "Incorporating Workplace Injury to Measure the Safety Performance of Industrial Sectors in Taiwan," Sustainability, MDPI, vol. 9(12), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    2. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
    3. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    4. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    5. Fernández, Esteban & Fernández, Paula, 2008. "An extension to Sun's decomposition methodology: The Path Based approach," Energy Economics, Elsevier, vol. 30(3), pages 1020-1036, May.
    6. Lior Gallo, 2023. "Electricity Intensity Convergence in the OECD Countries," Bank of Israel Working Papers 2023.10, Bank of Israel.
    7. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    8. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    9. Ang, B.W. & Huang, H.C. & Mu, A.R., 2009. "Properties and linkages of some index decomposition analysis methods," Energy Policy, Elsevier, vol. 37(11), pages 4624-4632, November.
    10. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
    11. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    12. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27," Energy Policy, Elsevier, vol. 68(C), pages 576-584.
    13. Fei Wang & Changjian Wang & Yongxian Su & Lixia Jin & Yang Wang & Xinlin Zhang, 2017. "Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    14. Bor, Yunchang Jeffrey, 2008. "Consistent multi-level energy efficiency indicators and their policy implications," Energy Economics, Elsevier, vol. 30(5), pages 2401-2419, September.
    15. Lescaroux, François, 2008. "Decomposition of US manufacturing energy intensity and elasticities of components with respect to energy prices," Energy Economics, Elsevier, vol. 30(3), pages 1068-1080, May.
    16. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    17. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
    18. Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2005. "Driving forces behind the stagnancy of China's energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change," Energy Policy, Elsevier, vol. 33(3), pages 319-335, February.
    19. Sun, J.W & Ang, B.W, 2000. "Some properties of an exact energy decomposition model," Energy, Elsevier, vol. 25(12), pages 1177-1188.
    20. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:54:y:2015:i:c:p:36-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/forpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.