IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i23p16488-d1292611.html
   My bibliography  Save this article

Decoupling for Carbon Neutrality: An Industrial Structure Perspective from Qinghai, China over 1990–2021

Author

Listed:
  • Niangjijia Nyangchak

    (Department of Economics, SOAS University of London, London WC1H 0XG, UK)

Abstract

Carbon neutrality is urgent as rapidly emerging economies aggravate their share of global energy demand. In China, the energy structure is dominated by fossil fuels, but it varies significantly across provinces. As an indicator of carbon neutrality, previous studies of decoupling between carbon dioxide emissions and economic growth focused at the national and sector levels in China. However, they overlook the role of industrial structure in decoupling at the provincial level. In this light, the following paper focuses on Qinghai Province, analyzing decoupling and its influencing factors for achieving carbon neutrality from an industrial structure perspective over 1990–2021. It uses the Tapio decoupling model to evaluate decoupling states and the Logarithmic Mean Divisia Index decomposition to evaluate the influencing factors. A Data Envelopment Analysis model of super-efficiency Slacks-Based Measure is used to evaluate the decarbonization efficiency. The study finds that the overall trend shifted from weak to strong decoupling. Strong decoupling dominated the primary industry while weak decoupling dominated the secondary and tertiary industries. Economic growth negatively impacted overall decoupling, while population had a marginal effect. Energy structure and intensity generally promoted decoupling. Additionally, the overall mean efficiency of decarbonization was 0.95, led by the tertiary industry. The paper concludes by discussing policy implications.

Suggested Citation

  • Niangjijia Nyangchak, 2023. "Decoupling for Carbon Neutrality: An Industrial Structure Perspective from Qinghai, China over 1990–2021," Sustainability, MDPI, vol. 15(23), pages 1-25, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:23:p:16488-:d:1292611
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/23/16488/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/23/16488/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fang, Kai & Tang, Yiqi & Zhang, Qifeng & Song, Junnian & Wen, Qi & Sun, Huaping & Ji, Chenyang & Xu, Anqi, 2019. "Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces," Applied Energy, Elsevier, vol. 255(C).
    2. Cohen, Gail & Jalles, Joao Tovar & Loungani, Prakash & Marto, Ricardo & Wang, Gewei, 2019. "Decoupling of emissions and GDP: Evidence from aggregate and provincial Chinese data," Energy Economics, Elsevier, vol. 77(C), pages 105-118.
    3. Diakoulaki, D. & Mandaraka, M., 2007. "Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector," Energy Economics, Elsevier, vol. 29(4), pages 636-664, July.
    4. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    5. Ang, B.W & Zhang, F.Q & Choi, Ki-Hong, 1998. "Factorizing changes in energy and environmental indicators through decomposition," Energy, Elsevier, vol. 23(6), pages 489-495.
    6. Jason Hickel & Giorgos Kallis, 2020. "Is Green Growth Possible?," New Political Economy, Taylor & Francis Journals, vol. 25(4), pages 469-486, June.
    7. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    8. Kyle S. Herman, 2023. "Green growth and innovation in the Global South: a systematic literature review," Innovation and Development, Taylor & Francis Journals, vol. 13(1), pages 43-69, January.
    9. Xie, Pinjie & Gong, Ningyu & Sun, Feihu & Li, Pin & Pan, Xianyou, 2023. "What factors contribute to the extent of decoupling economic growth and energy carbon emissions in China?," Energy Policy, Elsevier, vol. 173(C).
    10. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    11. Ding, Song & Zhang, Huahan, 2023. "Forecasting Chinese provincial CO2 emissions: A universal and robust new-information-based grey model," Energy Economics, Elsevier, vol. 121(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petrick, Sebastian, 2013. "Carbon efficiency, technology, and the role of innovation patterns: Evidence from German plant-level microdata," Kiel Working Papers 1833, Kiel Institute for the World Economy (IfW Kiel).
    2. Jiasha Fu & Fan Wang & Jin Guo, 2024. "Decoupling Economic Growth from Carbon Emissions in the Yangtze River Economic Belt of China: From the Coordinated Regional Development Perspective," Sustainability, MDPI, vol. 16(6), pages 1-24, March.
    3. Mariana Conte Grand, 2018. "Desacople y Descomposición del Consumo Final de Energía en Argentina," CEMA Working Papers: Serie Documentos de Trabajo. 678, Universidad del CEMA.
    4. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    5. Yongyi Cheng & Liheng Lu & Tianyuan Shao & Manhong Shen & Laiqun Jin, 2018. "Decomposition Analysis of Factors Affecting Changes in Industrial Wastewater Emission Intensity in China: Based on a SSBM-GMI Approach," IJERPH, MDPI, vol. 15(12), pages 1-23, December.
    6. Wen, Hong-xing & Chen, Zhe & Yang, Qian & Liu, Jin-yi & Nie, Pu-yan, 2022. "Driving forces and mitigating strategies of CO2 emissions in China: A decomposition analysis based on 38 industrial sub-sectors," Energy, Elsevier, vol. 245(C).
    7. Yang, Lin & Yang, Yuantao & Zhang, Xian & Tang, Kai, 2018. "Whether China's industrial sectors make efforts to reduce CO2 emissions from production? - A decomposed decoupling analysis," Energy, Elsevier, vol. 160(C), pages 796-809.
    8. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    9. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
    10. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
    11. Gingrich, Simone & Kusková, Petra & Steinberger, Julia K., 2011. "Long-term changes in CO2 emissions in Austria and Czechoslovakia--Identifying the drivers of environmental pressures," Energy Policy, Elsevier, vol. 39(2), pages 535-543, February.
    12. Jie-Fang Dong & Chun Deng & Xing-Min Wang & Xiao-Lei Zhang, 2016. "Multilevel Index Decomposition of Energy-Related Carbon Emissions and Their Decoupling from Economic Growth in Northwest China," Energies, MDPI, vol. 9(9), pages 1-17, August.
    13. Wang, Zhiwei & Huang, Chunlin & Zhang, Ying & Zhong, Fanglei & Li, Weide, 2024. "Tackling carbon peak and carbon neutrality challenges: A method with long-range energy alternatives planning system and Logarithmic Mean Divisia Index Integration," Energy, Elsevier, vol. 311(C).
    14. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2009. "Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis," Energy, Elsevier, vol. 34(1), pages 90-111.
    15. Ashrafi, Ali & Seow, Hsin-Vonn & Lee, Lai Soon & Lee, Chew Ging, 2013. "The efficiency of the hotel industry in Singapore," Tourism Management, Elsevier, vol. 37(C), pages 31-34.
    16. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    17. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.
    18. Honma, Satoshi, 2012. "Environmental and economic efficiencies in the Asia-Pacific region," MPRA Paper 43361, University Library of Munich, Germany.
    19. Ronald E. Miller & Umed Temurshoev, 2017. "Output Upstreamness and Input Downstreamness of Industries/Countries in World Production," International Regional Science Review, , vol. 40(5), pages 443-475, September.
    20. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:23:p:16488-:d:1292611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.