IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login

Citations for "Representing energy technologies in top-down economic models using bottom-up information"

by McFarland, J. R. & Reilly, J. M. & Herzog, H. J.

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Narita, Daiju, 2008. "The use of CCS in global carbon management: simulation with the DICE model," Kiel Working Papers 1440, Kiel Institute for the World Economy (IfW).
  2. Octaviano, Claudia & Paltsev, Sergey & Gurgel, Angelo Costa, 2016. "Climate change policy in Brazil and Mexico: Results from the MIT EPPA model," Energy Economics, Elsevier, vol. 56(C), pages 600-614.
  3. Daiju Narita, 2008. "The Use of CCS in Global Carbon Management: Simulation with the DICE Model," Kiel Working Papers 1440, Kiel Institute for the World Economy.
  4. Finn Roar Aune & Gang Liu & Knut Einar Rosendahl & Eirik Lund Sagen, 2009. "Subsidising carbon capture. Effects on energy prices and market shares in the power market," Discussion Papers 595, Statistics Norway, Research Department.
  5. Barker, Terry & Ekins, Paul & Foxon, Tim, 2007. "Macroeconomic effects of efficiency policies for energy-intensive industries: The case of the UK Climate Change Agreements, 2000-2010," Energy Economics, Elsevier, vol. 29(4), pages 760-778, July.
  6. Schumacher, Katja & Sands, Ronald D., 2006. "Innovative energy technologies and climate policy in Germany," Energy Policy, Elsevier, vol. 34(18), pages 3929-3941, December.
  7. Rodrigues, Renato & Linares, Pedro, 2015. "Electricity load level detail in computational general equilibrium – part II – welfare impacts of a demand response program," Energy Economics, Elsevier, vol. 47(C), pages 52-67.
  8. Bibas, Ruben & Méjean, Aurélie & Hamdi-Cherif, Meriem, 2015. "Energy efficiency policies and the timing of action: An assessment of climate mitigation costs," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 137-152.
  9. Jacoby, Henry D. & Reilly, John M. & McFarland, James R. & Paltsev, Sergey, 2006. "Technology and technical change in the MIT EPPA model," Energy Economics, Elsevier, vol. 28(5-6), pages 610-631, November.
  10. Cao, Jing & Ho, Mun & Jorgenson, Dale, 2008. "“Co-benefits” of Greenhouse Gas Mitigation Policies in China: An Integrated Top-Down and Bottom-Up Modeling Analysis," Discussion Papers dp-08-10-efd, Resources For the Future.
  11. McFarland, James R. & Paltsev, Sergey & Jacoby, Henry D., 2009. "Analysis of the Coal Sector under Carbon Constraints," Journal of Policy Modeling, Elsevier, vol. 31(3), pages 404-424, May.
  12. Wiepke Wissema & Rob Dellink, . "CGE Analysis of the Impact of a Carbon Energy Tax on the Irish Economy," EcoMod2006 272100104, EcoMod.
  13. Goulder, Lawrence H. & Pizer, William A., 2006. "The Economics of Climate Change," Discussion Papers dp-06-06, Resources For the Future.
  14. Schenk, Niels J. & Moll, Henri C. & Schoot Uiterkamp, Anton J.M., 2007. "Meso-level analysis, the missing link in energy strategies," Energy Policy, Elsevier, vol. 35(3), pages 1505-1516, March.
  15. Xavier Labandeira Villot & Pedro Linares & Miguel Rodríguez, 2009. "An Integrated Approach to Simulate the Impacts of Carbon Emissions Trading Schemes," Working Papers 2009-29, FEDEA.
  16. Pukšec, Tomislav & Krajačić, Goran & Lulić, Zoran & Mathiesen, Brian Vad & Duić, Neven, 2013. "Forecasting long-term energy demand of Croatian transport sector," Energy, Elsevier, vol. 57(C), pages 169-176.
  17. Schumacher, Katja & Sands, Ronald D., 2007. "Where are the industrial technologies in energy-economy models? An innovative CGE approach for steel production in Germany," Energy Economics, Elsevier, vol. 29(4), pages 799-825, July.
  18. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
  19. Doukas, Haris & Patlitzianas, Konstantinos D. & Psarras, John, 2006. "Supporting sustainable electricity technologies in Greece using MCDM," Resources Policy, Elsevier, vol. 31(2), pages 129-136, June.
  20. Karplus, Valerie J. & Paltsev, Sergey & Reilly, John M., 2010. "Prospects for plug-in hybrid electric vehicles in the United States and Japan: A general equilibrium analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 620-641, October.
  21. Qin Bao & Ling Tang & Zhongxiang Zhang & Han Qiao & Shouyang Wang, 2012. "Impacts of Border Carbon Adjustments on China's Sectoral Emissions: Simulations with a Dynamic Computable General Equilibrium Model," CCEP Working Papers 1202, Centre for Climate Economics & Policy, Crawford School of Public Policy, The Australian National University.
  22. Qi, Tianyu & Zhang, Xiliang & Karplus, Valerie J., 2014. "The energy and CO2 emissions impact of renewable energy development in China," Energy Policy, Elsevier, vol. 68(C), pages 60-69.
  23. Stefan Boeters & J. Koornneef, 2010. "Supply of renewable energy sources and the cost of EU climate policy," CPB Discussion Paper 142, CPB Netherlands Bureau for Economic Policy Analysis.
  24. Webster, Mort & Paltsev, Sergey & Reilly, John, 2010. "The hedge value of international emissions trading under uncertainty," Energy Policy, Elsevier, vol. 38(4), pages 1787-1796, April.
  25. Chris Bataille, Mark Jaccard, John Nyboer and Nic Rivers, 2006. "Towards General Equilibrium in a Technology-Rich Model with Empirically Estimated Behavioral Parameters," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 93-112.
  26. repec:hal:wpaper:hal-00866448 is not listed on IDEAS
  27. Zhang, Pengcheng & Peeta, Srinivas, 2014. "Dynamic and disequilibrium analysis of interdependent infrastructure systems," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 357-381.
  28. Hodjat Ghadimi, 2007. "Global Impact of Energy Use in Middle East Oil Economies: A Modeling Framework for Analyzing Technology-Energy-Environment-Economy Chain," Working Papers Working Paper 2007-05, Regional Research Institute, West Virginia University.
  29. Newell, Richard & Anderson, Soren, 2003. "Prospects for Carbon Capture and Storage Technologies," Discussion Papers dp-02-68, Resources For the Future.
  30. Zhang, Pengcheng & Peeta, Srinivas, 2011. "A generalized modeling framework to analyze interdependencies among infrastructure systems," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 553-579, March.
  31. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
  32. Adriana Ignaciuk, 2005. "Energy policies and their impact on establishing nature areas in Poland - an AGE analysis," ERSA conference papers ersa05p600, European Regional Science Association.
  33. Ling Tang & Qin Bao & ZhongXiang Zhang & Shouyang Wang, 2013. "Carbon-based Border Tax Adjustments and China's International Trade: Analysis based on a Dynamic Computable General Equilibrium Model," CCEP Working Papers 1301, Centre for Climate Economics & Policy, Crawford School of Public Policy, The Australian National University.
  34. Sue Wing, Ian, 2008. "The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technology detail in a social accounting framework," Energy Economics, Elsevier, vol. 30(2), pages 547-573, March.
  35. Ron SANDS & Katja SCHUMACHER, . "Decomposition Analysis and Climate Policy in a General Equilibrium Model of Germany," EcoMod2008 23800124, EcoMod.
  36. Otto, Vincent M. & Löschel, Andreas, 2008. "Technological Uncertainty and Cost-effectiveness of CO2 Emission Trading Schemes," ZEW Discussion Papers 08-050, ZEW - Zentrum für Europäische Wirtschaftsforschung / Center for European Economic Research.
  37. Henningsen, Arne & Henningsen, Géraldine, 2012. "On estimation of the CES production function—Revisited," Economics Letters, Elsevier, vol. 115(1), pages 67-69.
  38. Ruben Bibas & Aurélie Méjean, 2014. "Potential and limitations of bioenergy for low carbon transitions," Climatic Change, Springer, vol. 123(3), pages 731-761, April.
  39. Ian Sue Wing, 2005. "The Synthesis of Bottom-Up and Top-Down Approaches to Climate Policy Modeling: Electric Power Technologies and the Cost of Limiting U.S. CO2 Emissions," Computing in Economics and Finance 2005 21, Society for Computational Economics.
  40. Reilly, J. & Paltsev, S. & Felzer, B. & Wang, X. & Kicklighter, D. & Melillo, J. & Prinn, R. & Sarofim, M. & Sokolov, A. & Wang, C., 2007. "Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone," Energy Policy, Elsevier, vol. 35(11), pages 5370-5383, November.
  41. Peters, Jeffrey C. & Hertel, Thomas W., 2016. "The database–modeling nexus in integrated assessment modeling of electric power generation," Energy Economics, Elsevier, vol. 56(C), pages 107-116.
  42. Fabien Roques & Olivier Sassi & Céline Guivarch & Henri Waisman & Renaud Crassous & Jean Charles Hourcade, 2009. "Integrated Modelling of Economic-Energy-Environment Scenarios - The Impact of China and India's Economic Growth on Energy Use and CO2 Emissions," CIRED Working Papers hal-00866448, HAL.
  43. Babiker, Mustafa & Gurgel, Angelo & Paltsev, Sergey & Reilly, John, 2009. "Forward-looking versus recursive-dynamic modeling in climate policy analysis: A comparison," Economic Modelling, Elsevier, vol. 26(6), pages 1341-1354, November.
  44. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
  45. Daniels, K.A. & Huppert, H.E. & Neufeld, J.A. & Reiner, D., 2012. "The current state of CCS: Ongoing research at the University of Cambridge with application to the UK policy framework," Cambridge Working Papers in Economics 1257, Faculty of Economics, University of Cambridge.
  46. Newell, Richard G. & Jaffe, Adam B. & Stavins, Robert N., 2006. "The effects of economic and policy incentives on carbon mitigation technologies," Energy Economics, Elsevier, vol. 28(5-6), pages 563-578, November.
  47. Kiuila, O. & Rutherford, T.F., 2013. "The cost of reducing CO2 emissions: Integrating abatement technologies into economic modeling," Ecological Economics, Elsevier, vol. 87(C), pages 62-71.
  48. repec:rri:wpaper:200705 is not listed on IDEAS
  49. McFarland, James R. & Herzog, Howard J., 2006. "Incorporating carbon capture and storage technologies in integrated assessment models," Energy Economics, Elsevier, vol. 28(5-6), pages 632-652, November.
  50. Tapia-Ahumada, Karen & Octaviano, Claudia & Rausch, Sebastian & Pérez-Arriaga, Ignacio, 2015. "Modeling intermittent renewable electricity technologies in general equilibrium models," Economic Modelling, Elsevier, vol. 51(C), pages 242-262.
  51. Abrell, Jan & Weigt, Hannes, 2008. "The Interaction of Emissions Trading and Renewable Energy Promotion," MPRA Paper 65658, University Library of Munich, Germany.
  52. Ruben Bibas & Aurélie Méjean, 2012. "Negative emissions and ambitious climate policies in a second best world: A general equilibrium assessment of technology options in the electricity sector," EcoMod2012 4569, EcoMod.
  53. Ignaciuk, Adriana M. & Dellink, Rob B., 2006. "Biomass and multi-product crops for agricultural and energy production--an AGE analysis," Energy Economics, Elsevier, vol. 28(3), pages 308-325, May.
  54. Andreas Löschel & Vincent M. Otto, . "Technology Shocks and Directed Environmental Policy - The Case of CO2 Capture and Storage," Energy and Environmental Modeling 2007 24000034, EcoMod.
  55. Halkos, George, 2014. "The Economics of Climate Change Policy: Critical review and future policy directions," MPRA Paper 56841, University Library of Munich, Germany.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.